Answer:
We could do two 1:50 dilutions and one 1:4 dilutions.
Explanation:
Hi there!
A solution that is 1000 ug/ ml (or 1000 mg / l) is 1000 ppm.
Knowing that 1 ppm = 1000 ppb, 100 ppb is 0.1 ppm.
Then, we have to dilute the stock solution (1000 ppm / 0.1 ppm) 10000 times.
We could do two 1:50 dilutions and one 1:4 dilutions (50 · 50 · 4 = 10000). Since the first dilution is 1:50, you will use the smallest quantity of the stock solution (if we use the 10.00 ml flask):
First step (1:50 dilution):
Take 0.2 ml of the stock solution using the third dispenser (20 - 200 ul), and pour it in the 10.00 ml flask. Fill with water to the mark (concentration : 1000 ppm / 50 = 20 ppm).
Step 2 (1:50 dilution):
Take 0.2 ml of the solution made in step 1 and pour it in another 10.00 ml flask. Fill with water to the mark. Concentration 20 ppm/ 50 = 0.4 ppm)
Step 3 (1:4 dilution):
Take 2.5 ml of the solution made in step 3 (using the first dispenser 1 - 5 ml) and pour it in a 10.00 ml flask. Fill with water to the mark. Concentration 0.4 ppm / 4 = 0.1 ppm = 100 ppb.
B) False- It has seven
A hexagon would have 6.
Answer is: H₂O → H⁺ + OH⁻.
Water dissociates (autoionization) to form hydrogen ions (H⁺) and hydroxide (OH⁻) ions. The protons (H⁺) hydrate as hydroxonium ions( H₃O⁺).
The Kw (the ionic product for water) at 25°C is 1·10⁻¹⁴ mol²/dm⁶ or 1·10⁻¹⁴ M². Concentration of hydrogen ions and hydroxide ions in pure water are the same.
Answer:

Explanation:
Hello.
In this case, since the neutralization of the acid requires equal number of moles of both acid and base:

Whereas we can express it in terms of concentrations and volumes:

Thus, we can compute the volume of sodium hydroxide (base) as follows:

Best regards.
The correct answers is 1/57