The number of electrons it take to fill the mos formed from the combination of the 3s orbitals of two atoms simply is 14 electrons.
<h3>How electrons are distributed in the 3s orbitals.</h3>
The 3s orbital possess two different spherical nodes which is highly connected with the principal quantum number. In order words, it has 2 radial nodes. Also the shape of the 3s orbital is spherical in shape.
That being said, from the context of the above given task, the number of electrons which fill the mos formed from the combination of the 3s orbitals of two atoms is fourteen electrons.
However, the electron configuration of an atom simply is the arrangement of electrons in the electron shell or orbit of the atom of that element.
In conclusion, it can be deduced from above s orbital has a maximum of two electrons and this energy increases as the orbitals increases.
Read more on electron:
brainly.com/question/860094
#SPJ1
The currents of the mantle pull the crust above it through drag. The plates, therefore, move on top of the mantle. At San Andreas fault, the North American Plate met the Pacific plate. However, due to the presence of the Farallon plate that was disappearing into the mantle in a subduction zone, the Pacific and North American plates movements changed in their configuration. The two plates now move past each other. The San Andreas fault is, therefore, a strike-slip fault.
Answer:
(Avogadro constant)
Explanation:
It is known by the name of mole (mol) to one of the fundamental physical magnitudes that contemplate the International System of Units. This unit is used to measure the quantity of all kinds of substances present in a given system.
The mole, experts say, reflects the amount of substance that has a specific number of entities of elementary character as atoms can be found in twelve grams of carbon-12. This means that the number of elementary units (as in the case of atoms, molecules or ions, for example) that are reflected in a mole of substance is a constant that has no direct relationship with the type of particle or material in question. This amount is known as Avogadro's number.
This constant, baptized in homage to the scientist of Italian origin Amedeo Avogadro (1776-1856), allows to count microscopic particles from macroscopic measurements (as it is the case of the mass).