Answer:
No, all angles in any triangle must add up to 180.
9514 1404 393
Answer:
- Constraints: x + y ≤ 250; 250x +400y ≤ 70000; x ≥ 0; y ≥ 0
- Objective formula: p = 45x +50y
- 200 YuuMi and 50 ZBox should be stocked
- maximum profit is $11,500
Step-by-step explanation:
Let x and y represent the numbers of YuuMi and ZBox consoles, respectively. The inventory cost must be at most 70,000, so that constraint is ...
250x +400y ≤ 70000
The number sold will be at most 250 units, so that constraint is ...
x + y ≤ 250
Additionally, we require x ≥ 0 and y ≥ 0.
__
A profit of 295-250 = 45 is made on each YuuMi, and a profit of 450-400 = 50 is made on each ZBox. So, if we want to maximize profit, our objective function is ...
profit = 45x +50y
__
A graph is shown in the attachment. The vertex of the feasible region that maximizes profit is (x, y) = (200, 50).
200 YuuMi and 50 ZBox consoles should be stocked to maximize profit. The maximum monthly profit is $11,500.
When we factorise an expression, we are looking for simple factors that multiply to get the original expression. Usually it is very natural to factorise something like a quadratic in x. For example:
x^2 + 3x + 2 = (x+1)(x+2)
But there are other situations where factorisation can be applied. Take this quadratic:
x^2 - 9x = x(x-9)
This second example is closer to the question in hand. Just like x was a common factor to both x^2 and -9x, we are looking for a common factor to both 6b and 24bc. The common factor is 6b.
Hence 6b + 24bc = 6b(1 + 4c).
I hope this helps you :)
Answer:
true
Step-by-step explanation:
Simplifyiing
the greatest common factor is 3 so
3x - 9y + 12 = 3(x - 3y + 4)