Answer : The compound that would be most soluble in water is CH3CH2CH2OH
Explanation :
Water is a polar solvent and can dissolve polar molecules. This is based on the principle "Like dissolves like".
Among the given molecules, CH3CH2CH2CH3 is a hydrocarbon known as butane. All hydrocarbons are non polar. Therefore this compound will not be soluble in water.
The remaining compounds are polar, but Ch3CH2CH2OH shows greater solubility in water owing to presence of hydrogen bonding.
Hydrogen bonding is a type of intermolecular force that gets formed when a compound has hydrogen atom directly attached to highly electro-negative N, F or O atom.
When CH3CH2CH2OH is dissolved in water, it forms hydrogen bonds with water molecules. Due to this hydrogen bonding, the molecule shows greater solubility.
Therefore CH3CH2CH2OH is the most soluble compound in water
Diffusion is the process of a substance spreading out to evenly fill its container or environment. Rate of diffusion of a gas is inversely proportional to the molar mass of the gas.

Lighter(lower) the molar mass of the gas , faster will be its rate of diffusion and heavier (higher) the molar mass of the gas , slower will be its rate of diffusion.
We have to arrange the given gases from slowest rate of diffusion to fastest rate of diffusion that means we need to arrange gases from higher molar mass to lower molar mass.
Molar mass of given gases are :
Cl = 35.5 g/mol
Xe = 131.29 g/mol
He = 4.00 g/mol
N = 14.00 g/mol
So correct order for slowest rate of diffusion (highest molar mass) to fastest rate of diffusion (lowest molar mass) is :
Xe , Cl , N , He
Xe having the highest molar mass will have the slowest rate of diffusion and He with lowest molar mass will have the fastest rate of diffusion, so option 'c' is correct.
Note : Slowest rate of diffusion = High Molar Mass
Fastest rate of diffusion = Low Molar Mass
Answer:
[Zn²⁺] = 4.78x10⁻¹⁰M
Explanation:
Based on the reaction:
ZnBr₂(aq) + K₂CO₃(aq) → ZnCO₃(s) + 2KBr(aq)
The zinc added produce the insoluble ZnCO₃ with Ksp = 1.46x10⁻¹⁰:
1.46x10⁻¹⁰ = [Zn²⁺] [CO₃²⁻]
We can find the moles of ZnBr₂ added = Moles of Zn²⁺ and moles of K₂CO₃ = Moles of CO₃²⁻ to find the moles of CO₃²⁻ that remains in solution, thus:
<em>Moles ZnB₂ (Molar mass: 225.2g/mol) = Moles Zn²⁺:</em>
6.63g ZnBr₂ * (1mol / 225.2g) = 0.02944moles Zn²⁺
<em>Moles K₂CO₃ = Moles CO₃²⁻:</em>
0.100L * (0.60mol/L) = 0.060 moles CO₃²⁻
Moles CO₃²⁻ in excess: 0.0600moles CO₃²⁻ - 0.02944moles =
0.03056moles CO₃²⁻ / 0.100L = 0.3056M = [CO₃²⁻]
Replacing in Ksp expression:
1.46x10⁻¹⁰ = [Zn²⁺] [0.3056M]
<h3>[Zn²⁺] = 4.78x10⁻¹⁰M</h3>
Answer:
The correct answer is m= mol solute kg soivent
Explanation:
Molality is a measure of concentration, which indicates the moles of solute (in this case sodium hydroxide) in 1kg of solvent .
In this case:
0,800 kg water-----0,400 mol NaOH
1 ,000 kg water ---x=(1 ,000 kg water x 0,400 mol NaOH)/0,800 kg water
x=0,5 mol NaOH---> <em>The solution is 0,5 molal (0,5 m)</em>