The properties of the given elements are as follows:
Potassium, K;
- State of matter: Solid
- Melting point: 63.5 °C
- Conductivity: Good
- Solubility (H2O): reacts rapidly with water
Iodine, I;
- State of matter: solid
- Melting point: 113.5 °C
- Conductivity: very poor
- Solubility (H2O): negligible
Gold, Au;
- State of matter: solid
- Melting point: 1064 °C
- Conductivity: excellent
- Solubility (H2O): none
Germanium, Ge;
- State of matter: solid
- Melting point: 938.2 °C
- Conductivity: fair
- Solubility (H2O): none
Barium, Ba;
- State of matter: solid
- Melting point: 727 °C
- Conductivity: good
- Solubility (H2O): reacts strongly
Argon, Ar;
- State of matter: gas
- Melting point: -189.4 °C
- Conductivity: none
- Solubility (H2O): negligible
Chlorine Cl;
- State of matter: gas
- Melting point: -101.5 °C
- Conductivity: poor
- Solubility (H2O): slight
Rubidium, Rb;
- State of matter: solid
- Melting point: 39.48 °C
- Conductivity: good
- Solubility (H2O): reacts violently
Silver, Ag;
- State of matter: solid
- Melting point: 961.8 °C
- Conductivity: excellent
- Solubility (H2O): none
Calcium, Ca;
- State of matter: solid
- Melting point: 842 °C
- Conductivity: good
- Solubility (H2O): reacts
Silicon, Si;
- State of matter: solid
- Melting point: 1,410 °C
- Conductivity: intermediate
- Solubility (H2O): none
Xenon, Xe;
- State of matter: gas
- Melting point: -111.8 °C
- Conductivity: very poor
- Solubility (H2O): none
<h3>What are elements?</h3>
Elements are pure substances which are composed of similar atoms.
Elements are defined as substances which cannot be split into simpler substances by an ordinary chemical process.
Elements have different physical and chemical properties and can be classified into:
- metals
- semi-metals
- non-metals
In conclusion, the physical and chemical properties of the elements vary from metals to non-metals.
Learn more about elements at: brainly.com/question/6258301
#SPJ1
Answer: 5.66 dm3
Explanation:
Given that:
Volume of neon gas = ?
Temperature T = 35°C
Convert Celsius to Kelvin
(35°C + 273 = 308K)
Pressure P = 0.37 atm
Number of moles N = 0.83 moles
Note that Molar gas constant R is a constant with a value of 0.0082 ATM dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
0.37atm x V = 0.83 moles x 0.0082 atm dm3 K-1 mol-1 x 308K
0.37 atm x V = 2.096 atm dm3
V = (2.096 atm dm3 / 0.37atm)
V = 5.66 dm3
Thus, the volume of the neon gas is 5.66 dm3
The given mass of cobalt chloride hydrate = 2.055 g
A sample of cobalt chloride hydrate was heated to drive off waters of hydration and the anhydrate was weighed.
The mass of anhydrous cobalt chloride = 1.121 g anhydrate.
The mass of water lost during heating = 2.055 g - 1.121 g = 0.934 g
Converting mass of water of hydration present in the hydrate to moles using molar mass:
Mass of water = 0.934 g
Molar mass of water = 18.0 g/mol
Moles of water = 
Get an equal amount of each element by adding coefficients to the different compounds.