Answer:
49 different ways
Step-by-step explanation:
If there are seven roads that lead to the top, you have seven possible choices to go to the top of the hill.
Then, to come back to the start, you also have seven possible choices (seven roads), and you can pick any road.
So, if you have seven ways to go up and seven ways to go down, the number of different ways of going to the top and coming back is the product of these numbers of possible choices.
N(total) = N(up) * N(down)
N(total) = 7 * 7
N(total) = 49 different ways
Brainliest pls and tysm!
Answer:
3
Step-by-step explanation:
Check the picture below.
since the vertical distance, namely the y-coordinate, is twice as much as the horizontal, then if the horizontal is "x", the vertical one must be 2x.
let's find the hypotenuse first.
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=\stackrel{adjacent}{x}\\ b=\stackrel{opposite}{2x}\\ \end{cases} \\\\\\ c=\sqrt{x^2+(2x)^2}\implies c=\sqrt{x^2+4x^2}\implies c=\sqrt{5x^2}\implies c=x\sqrt{5} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3D%5Cstackrel%7Badjacent%7D%7Bx%7D%5C%5C%20b%3D%5Cstackrel%7Bopposite%7D%7B2x%7D%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7Bx%5E2%2B%282x%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7Bx%5E2%2B4x%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B5x%5E2%7D%5Cimplies%20c%3Dx%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{2~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }}{\stackrel{hypotenuse}{~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ \sqrt{5}}}\implies \stackrel{\textit{and rationalizing the denominator}~\hfill }{\cfrac{2}{\sqrt{5}}\cdot \cfrac{\sqrt{5}}{\sqrt{5}}\implies \cfrac{2\sqrt{5}}{(\sqrt{5})^2}\implies \cfrac{2\sqrt{5}}{5}}](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B2~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%5Csqrt%7B5%7D%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Band%20rationalizing%20the%20denominator%7D~%5Chfill%20%7D%7B%5Ccfrac%7B2%7D%7B%5Csqrt%7B5%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%7B5%7D%7D%7B%5Csqrt%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B%28%5Csqrt%7B5%7D%29%5E2%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B5%7D%7D)
It's hard to have √2 points in a basketball game (or almost any game). The number of points scored is a discrete random variable, usually restricted to non-negative integers.
Here is all you need for b)