The gravitational force the sun experiences from the earth is 3.48×10²²N, which is exactly the same as the force the sun experiences from the earth.
- Gravity is a force that develops as a result of the attraction between mass-containing objects. The mass of the object has a direct relationship to the strength of this attraction. r equals the separation of two objects.
F = G (M₁M₂)/r²
Where, F the gravitational force
G=6.67×10⁻¹¹Nm²kg⁻² gravitational constant
M₁=5.98×10²⁴kg mass of earth
M₂= 1.99×10³⁰ kg the mass of the sun
r =15×10¹⁰ m is the distance between sun and earth
Putting all the values in above equation,
F = 6.67×10⁻¹¹Nm²kg⁻²(5.98×10²⁴kg 1.99×10³⁰ kg)/15×10¹⁰ m
On solving the above equation we get,
F = 3.48×10²²N
To know more about gravitational force
brainly.com/question/12830265
#SPJ4
Answer:
The speed of the banana just before it hits the water is:
√(2 · g · h) = v
Explanation:
Hi there!
Before Emily throws the banana, its potential energy is:
PE = m · g · h
Where:
PE = potential energy.
m = mass of the banana.
g = acceleration of the banana due to gravity.
h = height of the bridge (distance from the bridge to the ground).
When the banana reaches the water, all its potential energy will have converted to kinetic energy. The equation for kinetic energy is as follows:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the banana.
v = speed.
Then, when the banana hits the water:
m · g · h = 1/2 · m · v²
multiply by 2 and divide by m both sides of the equation:
2 · g · h = v²
√(2 · g · h) = v
Answer:
b) the height the ball bounces
Explanation:
the control variable is the variable that you change yourself. since you change the height that the ball bounces from we know this is the answer