Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon:
π=iMRT
Where, π is Osmotic pressure,
i=1 for non-electrolytes,
M is molar concentration of dissolved species (units of mol/L)
R is the ideal gas constant = 0.08206 L atm mol⁻¹K⁻¹,
T is the temperature in Kelvin(K),
Here, to calculate M convert into standard units mg tog, ml to L, c to Kelvin
M= (
*10⁻³ )/ 0.175 =(5.987 *10⁻⁵)mol / 0.175L = 34.21*10⁻⁵ mol/L
π=iMRT=(1)*(34.21*10⁻⁵)*(0.08206)*(298.15)=837×10⁻⁵= 8.37×10⁻³ atm
=6.36 torr
(1 atm=760 torr, 1 Kelvin =273.15 °C, 1L=1000ml, 1g=1000mg)
Answer:
I₂ = 8 mG
Explanation:
The intensity of a beam is
I = P / A
Where P is the emitted power which is 3) 3
Let's use index 1 for the initial position of r₁ = 6 ft and 2 for the second position r₂ = 3 ft
I₁ A₁ = I₂ A₂
I₂ = I₁ A₁ / A₂
The area of the beam if we assume that it is distributed either in the form of a sphere is
A₁ = 4π r²
We substitute
I₂ = I₁ (r₁ / r₂)²
I₂ = 2 (6/3)²
I₂ = 2 4
I₂ = 8 mG
Answer:
The water and peanut butter have different chemical properties.
(Lipids are not soluble in water)
Answer:
more speed means that an object has more energy, now if an object's place is something such as a hill, the potential energy will increase meaning an object will have more speed and acceleration. this is because you have the earth's gravity helping you out when the object goes downhill, giving it the higher potential energy