See attached for a sketch of some of the cross sections.
Each cross section has area equal to the square of the side length, which in turn is the vertical distance between the curve y = √(x + 1) and the x-axis (i.e. the distance between them that is parallel to the y-axis). This distance will be √(x + 1).
If the thickness of each cross section is ∆x, then the volume of each cross section is
∆V = (√(x + 1))² ∆x = (x + 1) ∆x
As we let ∆x approach 0 and take infinitely many such cross sections, the total volume of the solid is given by the definite integral,
Answer: The answer to your question is infinitely many solutions
Step-by-step explanation: There is two solutions to the system of equations, which means there is complex solutions, or in other words many solutions. And when you have more than one solution, you have infinitely many solutions. Hope this helps:)