Answer:
y=2e^(−x)cosx−e^(−x)sinx
Satisfies the equation
Step-by-step explanation:
Answer:
y=2e^(−x)cosx−e^(−x)sinx
y = e^(-x)[2cosx - sinx]
Find y' and y" using product law
y' = -e^(-x)[2cosx - sinx] + e^(-x)[-2sinx - cosx]
y' = -e^(-x)[2cosx - sinx + 2sinx + cosx]
y' = -e^(-x)[3cosx + sinx]
y" = e^(-x)[3cosx + sinx] - e^(-x)[-3sinx + cosx]
y" = e^(-x)[3cosx - cosx + sinx + 3sinx]
y" = e^(-x)[2cosx + 4sinx]
y" + 2y' + 2y
e^(-x)[2cosx + 4sinx] - 2e^(-x)[3cosx + sinx] +2e^(-x)[2cosx - sinx]
e^(-x)[4sinx - 2sinx - 2sinx + 2cosx - 6 cosx + 4cosx]
= e^(-x) × 0
= 0
Answer:
60
Step-by-step explanation:
To make 60 all you need to do is 30*3=60 I believe that it is 60
Answer:
6 + 2 = 8 x 2 = 16 divided by 2 = 8
Step-by-step explanation:
Formula of a trapezoid:
B1(base 1) + B2(base 2) x H (Height) x 1/2 (basically dividing by 2)
1. B
2. A
3. B
4. A
Is your answer
OMG where do I start just comment below this post and I will help you with all promise