1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
5

1. What is the area of the figure at the right?

Mathematics
1 answer:
RUDIKE [14]3 years ago
4 0

Answer:

38 + 14 = 52

52 x 16 = 832

832 divided by 2 = 416

Formula of a trapezoid:

B1(base 1) + B2(base 2) x H(height) x 1/2(basically just dividing by 2)

You might be interested in
F(x) = 2x3 + 7x2 – 4x – 5
qaws [65]

Answer:

Its 3

Step-by-step explanation:

7 0
3 years ago
If
Leno4ka [110]

Answer:

\frac{s^2-25}{(s^2+25)^2}

Step-by-step explanation:

Let's use the definition of the Laplace transform and the identity given:\mathcal{L}[t \cos 5t]=(-1)F'(s) with F(s)=\mathcal{L}[\cos 5t].

Now, F(s)=\int_0 ^{+ \infty}e^{-st}\cos(5t) dt. Using integration by parts with u=e^(-st) and dv=cos(5t), we obtain that F(s)=\frac{1}{5}\sin(5t)e^{-st} |_{0}^{+\infty}+\frac{s}{5}\int_0 ^{+ \infty}e^{-st}\sin(5t) dt=\int_0 ^{+ \infty}e^{-st}\sin(5t) dt.

Using integration by parts again with u=e^(-st) and dv=sin(5t), we obtain that

F(s)=\frac{s}{5}(\frac{-1}{5}\cos(5t)e^{-st} |_{0}^{+\infty}-\frac{s}{5}\int_0 ^{+ \infty}e^{-st}\sin(5t) dt)=\frac{s}{5}(\frac{1}{5}-\frac{s}{5}\int_0^{+ \infty}e^{-st}\sin(5t) dt)=\frac{s}{5}-\frac{s^2}{25}F(s).

Solving for F(s) on the last equation, F(s)=\frac{s}{s^2+25}, then the Laplace transform we were searching is -F'(s)=\frac{s^2-25}{(s^2+25)^2}

3 0
3 years ago
write a sequence of transformations that maps quadrilateral ABCD onto quadrilateral A"B"C"D" in the picture below
slavikrds [6]
Reflection over the y axis Then a translation of 2 units down
4 0
3 years ago
Read 2 more answers
A rain gutter is made from sheets of aluminum that are 16 inches wide by turning up the edges to form right angles. Determine th
blsea [12.9K]

Answer:

Depth of the rain gutter is 8 inches

Step-by-step explanation:

Let’s assume ‘x’ is the depth of the rain gutter

Then the width of the rain gutter can be written as 16 - 2x

Cross sectional area

A = depth x width

Substitute values

A = x*(16 - 2x)

A = 16x – 2x^2

Now according to axis of symmetry for maximum area x = -b/2a

x = -16/2*(-2)

x = 4 inches depth of rain gutter, substitute the value of x to get

Width of rain gutter 16 – 2(4) = 8 inches

Area of the rain gutter for maximum water flow

A = 4 * 8

A = 32 square inch.

8 0
4 years ago
What is the surface area of the regular pyramid given below?
VARVARA [1.3K]
Each trianglar side has an area: (1/2)*8*9=36
the base is a square with an area of 8*8=64
so the total surface area is 36+36+36+36+64=208
5 0
4 years ago
Read 2 more answers
Other questions:
  • Patricia works at a grocery store part time and earns $9 per hour. In addition to working at the grocery store, she tutors middl
    6·1 answer
  • While on vacation, you rent a bicycle. You pay $9 for each hour you use it. It costs $5 to rent a helmet while you use the bicyc
    7·1 answer
  • Can u guys PLEASE answer the depreciation question ASAP. THIS IS URGENT!
    11·2 answers
  • 7a + 8 = 20 solve for a
    8·2 answers
  • After working for 6 hours, Kevin earned $51.00. What is Kevin's unit rate.
    5·2 answers
  • Find the area of the shaded region.
    12·1 answer
  • Help please please please
    6·1 answer
  • Can someone please help me out
    7·1 answer
  • What is another name for Plane P below?
    15·1 answer
  • Brookwood High School is considering adding co-ed soccer to the sports program for the fall season. In order to get an unbiased
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!