Answer:
In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B.[1][2] The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.
Step-by-step explanation:
For example:
{\displaystyle x=y}x=y means that x and y denote the same object.[3]
The identity {\displaystyle (x+1)^{2}=x^{2}+2x+1}{\displaystyle (x+1)^{2}=x^{2}+2x+1} means that if x is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function.
{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}}{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}} if and only if {\displaystyle P(x)\Leftrightarrow Q(x).}{\displaystyle P(x)\Leftrightarrow Q(x).} This assertion, which uses set-builder notation, means that if the elements satisfying the property {\displaystyle P(x)}P(x) are the same as the elements satisfying {\displaystyle Q(x),}{\displaystyle Q(x),} then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have the same elements are equal." It is one of the usual axioms of set theory, called axiom of extensionality.[4]
Answer: 15 Times
Step-by-step explanation: It's 15 Times because if you add all of the other rolled times together you'll get 60 and 75-60=15.
Answer:
14cm, 16 cm, 18 cm
Step-by-step explanation:
Note that
= a:b: c = 7:8:9
We have to find the sum of the proportion
Sum of proportion = 7 + 8 + 9
= 24
Length of side a
7/24 × 48 = 14 cm
Length of side b
8 /24 × 48 = 16cm
Length of side a
9/24 × 48 = 18 cm
What are the lengths of the sides?
The lengths of the sides of the triangle in cm are
14cm, 16 cm, 18 cm
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3
9514 1404 393
Answer:
Every night
Step-by-step explanation:
The problem statement tells you ...
"Every night Chris reads a number of pages that can be rounded to the nearest hundred."
Then it asks you ...
"On what nights does Chris read a number of pages that can be rounded to the nearest hundred?"
If we take the problem statement at face value, the answer must be ...
"Every night."