Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.
Answer:30
Step-by-step explanation:
Answer:
The probability is
≅ 
Step-by-step explanation:
Let's analyze the question.
There are 15 students in the 8th grade.
The students are randomly placed into three different algebra classes of 5 students each.
We are looking for the probability that Trevor, Terry and Evan will be in the same algebra class.
One possible way to solve this question is to think about the product probability rule.
We can use it because we are in an equiprobable space. (And also the events are independent).
Let's set for example a class for Evan.
The probability that Evan will be in a class is 
Then for Terry there are
places out of
that puts Terry in the Evan's class.
We write 
Finally for Trevor there are
places out of the remaining
that puts Trevor in the same class with Evan and Terry.
Using the product rule we write :

The probability of the event is
≅ 