1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
9

Solve the inequality 2(3x - 4) > 9x - 10

Mathematics
2 answers:
jenyasd209 [6]3 years ago
7 0

Answer:

x<-6

Step-by-step explanation:

USPshnik [31]3 years ago
3 0

it is b please give me brainlyest

You might be interested in
PLEAS HELP I REALLY NEED HELP
blsea [12.9K]

Answer:

the first one in the picture

Step-by-step explanation:

8x8x8x8=4096

9x9x9x9=6561

4096x6561=26873856

72x72x72x72=26873856

5 0
2 years ago
Evaluate the interval (Calculus 2)
Darya [45]

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

3 0
2 years ago
Express the integral as a limit of Riemann sums. Do not evaluate the limit. (Use the right endpoints of each subinterval as your
Darina [25.2K]

Answer:

Given definite  integral as a limit of Riemann sums is:

\lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]

Step-by-step explanation:

Given definite integral is:

\int\limits^7_4 {\frac{x}{2}+x^{3}} \, dx \\f(x)=\frac{x}{2}+x^{3}---(1)\\\Delta x=\frac{b-a}{n}\\\\\Delta x=\frac{7-4}{n}=\frac{3}{n}\\\\x_{i}=a+\Delta xi\\a= Lower Limit=4\\\implies x_{i}=4+\frac{3}{n}i---(2)\\\\then\\f(x_{i})=\frac{x_{i}}{2}+x_{i}^{3}

Substituting (2) in above

f(x_{i})=\frac{1}{2}(4+\frac{3}{n}i)+(4+\frac{3}{n}i)^{3}\\\\f(x_{i})=(2+\frac{3}{2n}i)+(64+\frac{27}{n^{3}}i^{3}+3(16)\frac{3}{n}i+3(4)\frac{9}{n^{2}}i^{2})\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{3}{2n}i+\frac{144}{n}i+66\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{291}{2n}i+66\\\\f(x_{i})=3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]

Riemann sum is:

= \lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]

4 0
3 years ago
A graph is made by a straight line that intersects the y axis at the point (0,12). Why isn't that graph a proportional relations
bogdanovich [222]

Answer:

The table of values and their graph show above a straight line that passes through the origin. This indicates that the relationship between the two currencies is in direct proportion. Think about what this means in real terms – if you have ten times more dollars than another person, when you both exchange your money, you will still have ten times more money. Notice also that the graph passes through the origin; this makes sense as if you have no dollars you will get no pounds!

We can express these relationships algebraically as well as graphically.

4 0
3 years ago
What is 1,000+500+6 in standard form?
Ymorist [56]

1,506 is standard form

6 0
3 years ago
Read 2 more answers
Other questions:
  • 7(1-q) = -3(5+3q)<br><br> Enter only the value of the variable <br><br> please answer ASAP!
    13·2 answers
  • Urgent! Will award brainliest...<br> Factor the following polynomial:<br> <img src="https://tex.z-dn.net/?f=3a%5E%7B2%7D-21a%2B3
    11·1 answer
  • 2+2=4 the wat does 50*1 equal
    6·2 answers
  • HELP QUICK IM STRUGGLING!:(
    12·2 answers
  • Find the area of the shaded region. With steps
    12·1 answer
  • HELP WILL MARK BRAINLIEST
    10·1 answer
  • Question in the photo
    11·2 answers
  • Pls help its a math question
    12·2 answers
  • kyle walked his neighbors dog to earn money.He earned $89.49 during a 3 month period.What was the average amount kyle earned eac
    12·1 answer
  • Question 4(Multiple Choice Worth 4 points)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!