Step-by-step explanation:
OK, let's assume it this way:
<em>Sn=1.1!+2.2!+3.3!+...+n.n!</em><em>=</em><em>(</em><em>2</em><em>‐</em><em>1</em><em>)</em><em>.</em><em>1</em><em>!</em><em>+</em><em>(</em><em>3</em><em>-</em><em>1</em><em>)</em><em>.</em><em>2</em><em>!</em><em>+</em><em>(</em><em>4</em><em>-</em><em>1</em><em>)</em><em>3</em><em>!</em><em>+</em><em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>-</em><em>1</em><em>)</em><em>.</em><em>n</em><em>!</em>
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!<em>=</em><em>(</em><em>2</em><em>.</em><em>1</em><em>!</em><em>-</em><em>1</em><em>!</em><em>)</em><em>+</em><em>(</em><em>3</em><em>.</em><em>2</em><em>!</em><em>-</em><em>2</em><em>!</em><em>)</em><em>+</em><em>(</em><em>4</em><em>.</em><em>3</em><em>!</em><em>-</em><em>3</em><em>!</em><em>)</em><em>+</em><em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>(</em><em>n-1</em><em>)</em><em>n</em><em>!</em><em>-</em><em>n</em><em>!</em><em>)</em><em>=</em><em>(</em><em>2</em><em>!</em><em>-</em><em>1</em><em>!</em><em>)</em><em>+</em><em>(</em><em>3</em><em>!</em><em>-</em><em>2</em><em>!</em><em>)</em><em>+</em><em>(</em><em>4</em><em>!</em><em>-</em><em>3</em><em>!</em><em>)</em><em>+</em>
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+<em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>n</em><em>!</em><em>=</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>1</em><em>!</em><em>=</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>1</em>
and boom problem solved
All percentages can be expressed as fractions or decimals. To find a percentage of a number, we multiply the percentage with the number. In this case:
3/100 * 16/1 = 48/100 = 0.48
Or:
0.03 * 16 = 0.48
Her new hourly wage would be $16.48
Answer:
A. 7 in.
Step-by-step explanation:
We have been given that the perimeter of a rectangle is 16 inches. The equation that represents the perimeter of the rectangle is , where l represents the length of the rectangle and w represents the width of the rectangle.
We know that perimeter of rectangle is 2 times the sum of width and length of rectangle.




To be a rectangle length cannot be 8 as length and width of the rectangle is 8 inches.
Therefore, 7 inches the possible value for the length of the rectangle.
Determine whether the value is from a discrete or continuous data set. Number of coins in a jar is 78 number of coins in a jar is 78
Answer: Number of coins in a jar is from a discrete data set. Because the given variable is countable in a finite amount of time.
If a variable can take on any value between two specified values, it is called a continuous variable; otherwise, it is called a discrete variable.
Answer:
83 adult tickets and 217 student tickets.
Step-by-step explanation:
Let number of adult tickets sold = 
Given that total number of tickets = 300
So, number of student tickets = 300 - 
Cost of adult ticket = $15
Cost of student ticket = $11
Total collection from adult tickets = $
Total collection from student tickets = 
Given that overall collection = $3630

So, for atleast $3630 collection, there should be 83 adult tickets and (300-83 = 217 student tickets.
Now , collection = $3632