Correct Answer:
Option 3: <span>The quadratic function has two distinct real zeros.
The function is quadratic, therefore it can have only 2 zeros. The knowledge of x-intercepts is needed to determine the zeros, y-intercepts has nothing to do with the zeros of a function. The given function has 2 unique x-intercepts, so according to the fundamental theorem of algebra, this function has 2 distinct real roots as number of distinct real roots are equal to the number of x-intercepts. Therefore, option 3 is the correct answer. </span>
Answer:
y = 4 sin(½ x) − 3
Step-by-step explanation:
The function is either sine or cosine:
y = A sin(2π/T x) + C
y = A cos(2π/T x) + C
where A is the amplitude, T is the period, and C is the midline.
The midline is the average of the min and max:
C = (1 + -7) / 2
C = -3
The amplitude is half the difference between the min and max:
A = (1 − -7) / 2
A = 4
The maximum is at x = π, and the minimum is at x = 3π. The difference, 2π, is half the period. So T = 4π.
Plugging in, the options are:
y = 4 sin(½ x) − 3
y = 4 cos(½ x) − 3
Since the maximum is at x = π, this must be a sine wave.
y = 4 sin(½ x) − 3
The area of the kite is 84 feet
It wouldnt be reasonable bc a scale factor of 1 would make no difference therefore meaning there is no dilation.
Answer:
_
z=96x
(line on top of the nine)
Step-by-step explanation: