3t+10=16
-10. -10
3t=6
/3. /3
T=2
Answer:
Option C
23.08% markup on selling price.
Step-by-step explanation:
Given in the question,
markup percentage on cost price = 30%
To find,
markup percentage on selling price
Markup is the ratio between the cost of a good or service and its selling price.
Let suppose that cost price percentage = 100%
As we know that,
<h3>cost% + markup% = selling%</h3><h3>100% + 30% = 130%</h3>
So percent markup selling price = 30 / 130 x 100
= 23.0769
Hence, 30% markup on cost price = 23.0769% markup on selling price.
Step-by-step explanation:
Answer:30. hope this helps
Answer:
i need help on this one aswell
Step-by-step explanation:
noooooooooooo
pls
someone help us on this question
Answer:
![y(x)=tan(-log(cos(x))+\frac{\pi }{3} )](https://tex.z-dn.net/?f=y%28x%29%3Dtan%28-log%28cos%28x%29%29%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%29)
Step-by-step explanation:
Rewrite the equation as:
![\frac{dy(x)}{dx}-tan(x)=y(x)^{2} *tan(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%28x%29%7D%7Bdx%7D-tan%28x%29%3Dy%28x%29%5E%7B2%7D%20%2Atan%28x%29)
Isolating ![\frac{dy}{dx}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D)
![\frac{dy}{dx} =tan(x)+tan(x)*y^{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3Dtan%28x%29%2Btan%28x%29%2Ay%5E%7B2%7D)
Factor:
![\frac{dy}{dx} =tan(x)*(1+y^{2} )](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3Dtan%28x%29%2A%281%2By%5E%7B2%7D%20%29)
Dividing both sides by
and multiplying them by ![dx](https://tex.z-dn.net/?f=dx)
![\frac{dy}{1+y^{2} } =tan(x)dx](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7B1%2By%5E%7B2%7D%20%7D%20%3Dtan%28x%29dx)
Integrate both sides:
![\int\ \frac{dy}{1+y^{2} } = \int\ tan(x) dx](https://tex.z-dn.net/?f=%5Cint%5C%20%5Cfrac%7Bdy%7D%7B1%2By%5E%7B2%7D%20%7D%20%3D%20%5Cint%5C%20tan%28x%29%20%20dx)
Evaluate the integrals:
![arctan(y)=-log(cos(x))+C_1](https://tex.z-dn.net/?f=arctan%28y%29%3D-log%28cos%28x%29%29%2BC_1)
Solving for y:
![y(x)=tan(-log(cos(x))+C_1)](https://tex.z-dn.net/?f=y%28x%29%3Dtan%28-log%28cos%28x%29%29%2BC_1%29)
Evaluating the initial condition:
![y(0)=\sqrt{3} =tan(-log(cos(0))+C_1)=tan(-log(1)+C_1)=tan(0+C_1)](https://tex.z-dn.net/?f=y%280%29%3D%5Csqrt%7B3%7D%20%3Dtan%28-log%28cos%280%29%29%2BC_1%29%3Dtan%28-log%281%29%2BC_1%29%3Dtan%280%2BC_1%29)
![\sqrt{3} =tan(C_1)\\arctan(\sqrt{3} )=C_1\\60=C_1](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D%20%3Dtan%28C_1%29%5C%5Carctan%28%5Csqrt%7B3%7D%20%29%3DC_1%5C%5C60%3DC_1)
Converting 60 degrees to radians:
![60degrees*\frac{\pi }{180degrees} =\frac{\pi }{3}](https://tex.z-dn.net/?f=60degrees%2A%5Cfrac%7B%5Cpi%20%7D%7B180degrees%7D%20%3D%5Cfrac%7B%5Cpi%20%7D%7B3%7D)
Replacing
in the diferential equation solution:
![y(x)=tan(-log(cos(x))+\frac{\pi }{3} )](https://tex.z-dn.net/?f=y%28x%29%3Dtan%28-log%28cos%28x%29%29%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%29)