Answer:
the line is curved
Step-by-step explanation:
so it wont work
Answer:
1/10
13/100
4/5
12/25
3/10
63/100
3/5
51/200
2/9
5/11
To prove the last 2 recurring ones:
0.222222... = x
10x = 10 * 0.22222... = 2.222222....
Notice how the decimal part of 10x is the same as for x:
10x - x = 2.2222222... - 0.222222... = 2
10x - x = 9x = 2
x = 2/9
Same procedure for the other one but times by 100 instead:
x = 0.454545...
100x = 45.454545...
100x - x = 45.454545... - 0.454545... = 45
100x - x = 99x = 45
x = 45/99 = 5/11
Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
Answer:
There are infinite number of triangles that could be achieved with those angles.
To picture this, we only have to imagine a triangle that is either smaller or bigger than the one at hand.
Tracing a series of paralell lines (which guarantee that the angles are being kept), we can draw triangles for infinite values of x,y and z.