Answer:
first off, welcome to brainly, second, your answer is 14.4
Step-by-step explanation:
Because of the symmetry, we can just go from x=0 to x=2 to find the area between
<span>y = x^2 and y = 4 </span>
<span>that area = ∫4-x^2 dx from 0 to 2 </span>
<span>= [4x - (1/3)x^3] from 0 to 2 </span>
<span>= 8 - 8/3 - 0 </span>
<span>= 16/3 </span>
<span>so when y = b </span>
<span>x= √b </span>
<span>and we have the area as </span>
<span>∫(b - x^2) dx from 0 to √b </span>
<span>= [b x - (1/3)x^3] from 0 to √b </span>
<span>= b√b - (1/3)b√b - 0 </span>
<span>(2/3)b√b = 8/3 </span>
<span>b√b =4 </span>
<span>square both sides </span>
<span>b^3 = 16 </span>
<span>b = 16^(1/3) = 2 cuberoot(2) </span>
<span>or appr 2.52</span>
Answer:yeet
Step-by-step explanation:
Answer:
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Step-by-step explanation:
Given that M is a polynomial of degree 3.
So, it has three zeros.
Let the polynomial be
M(x) =a(x-p)(x-q)(x-r)
The two zeros of the polynomial are -4 and 4i.
Since 4i is a complex number. Then the conjugate of 4i is also a zero of the polynomial i.e -4i.
Then,
M(x)= a{x-(-4)}(x-4i){x-(-4i)}
=a(x+4)(x-4i)(x+4i)
=a(x+4){x²-(4i)²} [ applying the formula (a+b)(a-b)=a²-b²]
=a(x+4)(x²-16i²)
=a(x+4)(x²+16) [∵i² = -1]
=a(x³+4x²+16x+64)
Again given that M(0)= 53.12 . Putting x=0 in the polynomial
53.12 =a(0+4.0+16.0+64)

=0.83
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Answer:
I think Its C
Step-by-step explanation:
I did it on unit test so idk if its right or wrong