Answer:
a2b
Step-by-step explanation:
a6b3 / a4b2
When dividing exponents, you subtract them.
a6-4
b3-2
Leaving you with a2b
Answer:
Step-by-step explanation:
Explanation:
The
average rate of change
of g(x) over an interval between 2 points (a ,g(a)) and (b ,g(b) is the slope of the
secant line
connecting the 2 points.
To calculate the average rate of change between the 2 points use.
∣
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
g
(
b
)
−
g
(
a
)
b
−
a
a
a
∣
∣
∣
−−−−−−−−−−−−−−−
g
(
6
)
=
6
2
−
6
+
3
=
33
and
g
(
4
)
=
4
2
−
4
+
3
=
15
Thus the average rate of change between (4 ,15) and (6 ,33) is
33
−
15
6
−
4
=
18
2
=
9
This means that the average of all the slopes of lines tangent to the graph of g(x) between (4 ,15) and (6 ,33) is 9
Answer:
4:5
Step-by-step explanation:
28:35
28/7:35/7
4:5
hopefully this helps :)
Answer:
graph g(x)=1/4 x^2 - 2
Step-by-step explanation:
You are to replace x with (1/2x) in the expression x^2-2
So you have (1/2x)^2-2
1/4 x^2-2
Graph some points for g(x)=1/4 x^2-2
The vertex is (0,-2) and the parabola is open up.
I would graph 2 more points besides the vertex
x | g(x) ordered pairs to graph
----------- (-1,-1.75) and (0,-2) and (1,-1.75)
-1 -1.75
0 -2
1 -1.75