Answer:
1. Use a Rain Barrel. There are several options when it comes to water catchment systems, so if you don't love the look of rain barrels, there are other systems.
2. Plant Trees or Shrubs. A great choice for any landscape, trees and shrubbery serve several purposes.
Cellular respiration is a metabolic pathway that breaks down glucose and produces ATP. The stages of cellular respiration include glycolysis, pyruvate oxidation, the citric acid or Krebs cycle, and oxidative phosphorylation.
During cellular respiration, a glucose molecule is gradually broken down into carbon dioxide and water. Along the way, some ATP is produced directly in the reactions that transform glucose. Much more ATP, however, is produced later in a process called oxidative phosphorylation. Oxidative phosphorylation is powered by the movement of electrons through the electron transport chain, a series of proteins embedded in the inner membrane of the mitochondrion.
These electrons come originally from glucose and are shuttled to the electron transport chain when they gain electrons.
As electrons move down the chain, energy is released and used to pump protons out of the matrix, forming a gradient. Protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water. Glycolysis can take place without oxygen in a process called fermentation. The other three stages of cellular respiration—pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation—require oxygen in order to occur. Only oxidative phosphorylation uses oxygen directly, but the other two stages can't run without oxidative phosphorylation.). As electrons move down the chain, energy is released and used to pump protons out of the matrix, forming a gradient. Protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water.
Glycolysis can take place without oxygen in a process called fermentation. The other three stages of cellular respiration—pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation—require oxygen in order to occur. Only oxidative phosphorylation uses oxygen directly, but the other two stages can't run without oxidative phosphorylation.
Answer:
Promoter is located upstream and terminator is located downstream relative to the transcription start site.
Explanation:
Transcription start site is the site from where the transcription starts which is denoted by +1. The sequence of nucleotides which is present backword to them called upstream sequence and nucleotide sequence which is present in the forward direction of transcription start site are called downstream sequence.
Promoter sequences are present upstream to the transcription start site and are denoted with a minus sign and terminator sequence is present downstream to the transcription start site.
The shape of chromatin, which can be either open (euchromatin) or compact (heterochromatin), is dynamically regulated during the phases of the cell cycle is the two types of conformations.
- The main distinction between conformation and configuration is that whereas the configurations of the same molecule do not easily interconvert, their conformations do.
- With a predefined location in the nucleus and a certain form, such as metacentric, submetacentric, acrocentric, or telocentric, chromosomes are primarily heterochromatic in this stage.
- All DNA-mediated processes, including gene regulation, can be significantly impacted by the degree of nucleosomal packaging.
- While heterochromatin (tight or closed chromatin) is more compact and resistant to factors that need to access the DNA template, euchromatin (loose or open chromatin) structure is permissible for transcription.
To know more about chromatin check the below link:
brainly.com/question/691971
#SPJ4