Answer:
1 and 3, 2 and 4
Step-by-step explanation:
Supplementary angles total to 180° or should form a straight line. 1 and 3, 2 and 4 are vertical angles which equal one another and are not supplementary.
Answer:
Step-by-step explanation:
(a)
Consider the following:
![A=\frac{\pi}{4}=45°\\\\B=\frac{\pi}{3}=60°](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%3D45%C2%B0%5C%5C%5C%5CB%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%3D60%C2%B0)
Use sine rule,
![\frac{b}{a}=\frac{\sinB}{\sin A} \\\\=\frac{\sin{\frac{\pi}{3}} }{\sin{\frac{\pi}{4}}}\\\\=\frac{[\frac{\sqrt{3}}{2}]}{\frac{1}{\sqrt{2}}}\\\\=\frac{\sqrt{2}}{2}\times \frac{\sqrt{2}}{1}=\sqrt{\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5CsinB%7D%7B%5Csin%20A%7D%0A%5C%5C%5C%5C%3D%5Cfrac%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%0A%7D%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5D%7D%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B1%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D)
Again consider,
![\frac{b}{a}=\frac{\sin{B}}{\sin{A}} \\\\\sin{B}=\frac{b}{a}\times \sin{A}\\\\\sin{B}=\sqrt{\frac{3}{2}}\sin {A}\\\\B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5Csin%7BB%7D%7D%7B%5Csin%7BA%7D%7D%0A%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Cfrac%7Bb%7D%7Ba%7D%5Ctimes%20%5Csin%7BA%7D%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%20%7BA%7D%5C%5C%5C%5CB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Thus, the angle B is function of A is, ![B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=B%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Now find ![\frac{dB}{dA}](https://tex.z-dn.net/?f=%5Cfrac%7BdB%7D%7BdA%7D)
Differentiate implicitly the function
with respect to A to get,
![\cos {B}.\frac{dB}{dA}=\sqrt{\frac{3}{2}}\cos A\\\\\frac{dB}{dA}=\sqrt{\frac{3}{2}}.\frac{\cos A}{\cos B}](https://tex.z-dn.net/?f=%5Ccos%20%7BB%7D.%5Cfrac%7BdB%7D%7BdA%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Ccos%20A%5C%5C%5C%5C%5Cfrac%7BdB%7D%7BdA%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B%5Ccos%20A%7D%7B%5Ccos%20B%7D)
b)
When
, the value of
is,
![\frac{dB}{dA}=\sqrt{\frac{3}{2}}.\frac{\cos {\frac{\pi}{4}}}{\cos {\frac{\pi}{3}}}\\\\=\sqrt{\frac{3}{2}}.\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}\\\\=\sqrt{3}](https://tex.z-dn.net/?f=%5Cfrac%7BdB%7D%7BdA%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B%5Ccos%20%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%7B%5Ccos%20%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%7D)
c)
In general, the linear approximation at x= a is,
![f(x)=f'(x).(x-a)+f(a)](https://tex.z-dn.net/?f=f%28x%29%3Df%27%28x%29.%28x-a%29%2Bf%28a%29)
Here the function ![f(A)=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=f%28A%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
At ![A=\frac{\pi}{4}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%7D%7B4%7D)
![f(\frac{\pi}{4})=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{\frac{\pi}{4}}]\\\\=\sin^{-1}[\sqrt{\frac{3}{2}}.\frac{1}{\sqrt{2}}]\\\\\=\sin^{-1}(\frac{\sqrt{2}}{2})\\\\=\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5D%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5D%5C%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%5C%5C%5C%5C%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
And,
from part b
Therefore, the linear approximation at
is,
![f(x)=f'(A).(x-A)+f(A)\\\\=f'(\frac{\pi}{4}).(x-\frac{\pi}{4})+f(\frac{\pi}{4})\\\\=\sqrt{3}.[x-\frac{\pi}{4}]+\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28x%29%3Df%27%28A%29.%28x-A%29%2Bf%28A%29%5C%5C%5C%5C%3Df%27%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29.%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%2Bf%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D%5Csqrt%7B3%7D.%5Bx-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D)
d)
Use part (c), when
, B is approximately,
![B=f(46°)=\sqrt{3}[46°-\frac{\pi}{4}]+\frac{\pi}{3}\\\\=\sqrt{3}(1°)+\frac{\pi}{3}\\\\=61.732°](https://tex.z-dn.net/?f=B%3Df%2846%C2%B0%29%3D%5Csqrt%7B3%7D%5B46%C2%B0-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%7D%281%C2%B0%29%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D61.732%C2%B0)
Answer:
<h2>The radius is 4 units long.</h2>
Step-by-step explanation:
The given equation is
![(x-0.5)^{2} +(y-3.5)^{2} =16](https://tex.z-dn.net/?f=%28x-0.5%29%5E%7B2%7D%20%2B%28y-3.5%29%5E%7B2%7D%20%3D16)
This equation belongs to a circle, which center is at (0.5, 3.5) and its radius is 4.
You can deduct its elements, becase this equation of the circle is explicit, which means the constant term represents the square power of the radius. Solving that, we have
![r^{2} = 16\\r=\sqrt{16}\\ r=4](https://tex.z-dn.net/?f=r%5E%7B2%7D%20%3D%2016%5C%5Cr%3D%5Csqrt%7B16%7D%5C%5C%20r%3D4)
Therefore, the radius is 4 units long.
Lets x = width
length = x + 4 (4 meters longer than wide)
A = L * W
192 = x ( x +4)
192 = x^2 + 4x
x^2 + 4x - 192 = 0
(x +16)(x-12) = 0
x - 12 = 0, x = 12
x + 16 = 0, x = -16
so width x = 12
length = 12 + 4 = 16 (4 meters longer than wide)
answer. J
16
Answer:
(x-7)(x+5)
Step-by-step explanation: