1. First, you must find the constant of variation (k). The problem indicates that t<span>he base of each triangle varies inversely with the height. So, this can be represented as below:
</span>
B=k/H
B is the base of the triangle (B=10).
H is the height of the triangle (H=6).
k is the constant of variation.
2. When you clear "k", you obtain:
B=k/H
k=BxH
k=10x6
k=60
3. Now, you have:
B=60/H
4. You can give any value to "H" and you will obtain the base of the second triangle.
5. If H=12, then:
B=60/H
B=60/12
B=5
6. Therefore, <span>the possible base and height of a second triangle is:
</span>
B=5
H=12
C) 1 b =-2. D) 7 f(-2) = 3(-8) - 2. -5 x=6
y. 4(y + 1) = x. If (x, y) is the solution to
the system of equations.
Answer:
325 boys
Step-by-step explanation:
The ratio 5:7 represents 5+7=12 students. If we were to proportionalize this ratio to 780 students, we would multiply the ratio by 65/65 since 780/12=65.
Therefore, you have (5*65)/(7*65)=325/455 as your ratio. This means that there are 325 boys in the school
Answer:
Both get the same results that is,
![\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given :
![\bf M=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
and initial population,
![\bf P=\left[\begin{array}{ccc}130\\300\\70\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D)
a) - After two times, we will find in each position.
![P_2=[P].[M]^2=[P].[M].[M]](https://tex.z-dn.net/?f=P_2%3D%5BP%5D.%5BM%5D%5E2%3D%5BP%5D.%5BM%5D.%5BM%5D)
![M^2=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]\times \left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=M%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![\therefore\;\;\;\;\;\;\;\;\;\;\;P_2=\left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right] \times\left[\begin{array}{ccc}130\\300\\70\end{array}\right] = \left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3BP_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
b) - With in migration process, 500 people are numbered. There will be after a long time,
![After\;inifinite\;period=[M]^n.[P]](https://tex.z-dn.net/?f=After%5C%3Binifinite%5C%3Bperiod%3D%5BM%5D%5En.%5BP%5D)
![Then,\;we\;get\;the\;same\;result\;if\;we\;measure [M]^n=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=Then%2C%5C%3Bwe%5C%3Bget%5C%3Bthe%5C%3Bsame%5C%3Bresult%5C%3Bif%5C%3Bwe%5C%3Bmeasure%20%5BM%5D%5En%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Answer:
C = 2πr or C = πd
Step-by-step explanation:
Hope this helps :)