Answer:
sorry this is for points
Step-by-step explanation:
bye
Step-by-step explanation:
Hey there!
While factorising you remember to make it take common in most of the expression.
Here;
=mx+cx+my+cy
Take common 'x' in "mx+cx" and 'y' in my + cy.
= x(m+c) + y(m+c)
Now, "(m+c)" common again.
= (m+c) (x+y)
Therefore the factorized form of the expression in (m+c)(x+y).
<u>Hope it helps</u><u>.</u><u>.</u><u>.</u>
<span>Assuming that the particle is the 3rd
particle, we know that it’s location must be beyond q2; it cannot be between q1
and q2 since both fields point the similar way in the between region (due to
attraction). Choosing an arbitrary value of 1 for L, we get </span>
<span>
k q1 / d^2 = - k q2 / (d-1)^2 </span>
Rearranging to calculate for d:
<span> (d-1)^2/d^2 = -q2/q1 = 0.4 </span><span>
<span> d^2-2d+1 = 0.4d^2 </span>
0.6d^2-2d+1 = 0
d = 2.72075922005613
d = 0.612574113277207 </span>
<span>
We pick the value that is > q2 hence,</span>
d = 2.72075922005613*L
<span>d = 2.72*L</span>
Answer: 381704, because math
Geometric with a common ratio of 4/3
9*4/3 = 12
12*4/3= 16
16 *4/3 =21 1/3