Answer:
Option (2)
Step-by-step explanation:
Given:
AC is an angle bisector of ∠DAB and ∠DAB
m∠BCA ≅ m∠DCA
m∠BAC ≅ m∠DAC
To Prove:
ΔABC ≅ ΔADC
Solution:
Statements Reasons
1). m∠BCA ≅ m∠DCA 1). Given
2). m∠BAC ≅ m∠DAC 2). Given
3). AC ≅ AC 3). Reflexive property
4). ΔABC ≅ ΔADC 4). ASA property of congruence
Therefore, Option (2) will be the correct option.
Answer: 6x - 3 over x^3
Step-by-step explanation:
10.78 is the answer.
19.6 x .55
OM=18, so OQ=QM=18/2=9.
Given QU=8
from figure OQU is a right angled triangle , so OU^2=OQ^2 + QU^2
OU^2 = 9*9 + 8*8 = 81+72=153;
OU=sqrt(153) = 12.37 =13(approx);
From given statements of congruent NT and OU will also be congruent or identical. So, NT=OU=13
The answer is three its easy