<h2>YOUR ANSWER IS IN THE ATTACHMENT PLZZ REFER TO THE ATTACHMENT </h2><h2>MARK ME BRAINLIEST AND FOLLOW ME </h2>
The first 20 digits of pi are 3.14159265358979323846.....
I hope this helped! :-)
Answer:
(a) 750
(b) 1875
(c) 4875 or as a fracion 7/20
Step-by-step explanation:
Answer:
8a^3.
Step-by-step explanation:
(a+b)^3=a^3+b^3+3a^2b+3ab^2
(a-b)^3=a^3-b^3-3a^2b+3ab^2
(a+b)^3+(a-b)^3=2a^3+6ab^2
According to the question
(a+b)^3+(a-b)^3+6a(a^2-b^2)
Put in the value
=2a^3+6ab^2 +6a^3–6ab^2
=8a^3
Answer:
11.44% probability that exactly 12 members of the sample received a pneumococcal vaccination.
Step-by-step explanation:
For each adult, there are only two possible outcomes. Either they received a pneumococcal vaccination, or they did not. The probability of an adult receiving a pneumococcal vaccination is independent of other adults. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
70% of U.S. adults aged 65 and over have ever received a pneumococcal vaccination.
This means that 
20 adults
This means that 
Determine the probability that exactly 12 members of the sample received a pneumococcal vaccination.
This is P(X = 12).


11.44% probability that exactly 12 members of the sample received a pneumococcal vaccination.