or 
At the point/angle E:
- the adjacent side(side <u>next to</u> the point/angle) is ED
- the opposite side(side of the triangle <u>across</u> from the point/angle) is DF
- the hypotenuse (the<u> longest side</u> of the triangle) is EF.
sin ∠E = 
sin ∠E =
(simplified)
The answer is (7, -26) for The second endpoint.
We'll call the midpoint M. In order to find this, we must first note that to find a midpoint we need to take the average of the endpoints. To do this we add them together and then divide by 2. So, using that, we can write a formula and solve for each part of the k coordinates. We'll start with just x values.
(Ux + Vx)/2 = Mx
(Vx + 3)/2 = 5
Vx + 3 = 10
Vx = 7
And now we do the same thing for y values
(Uy + Vy)/2 = My
(Vy + 6)/2 = -10
Vy + 6 = -20
Vy = -26
This gives us the final point of (7, -26)
Answer:
90
Step-by-step explanation:
for percentage
×100
= 0.9×100
=90
There is no problem on here
Answer:
Step-by-step explanation:
The mean SAT score is
, we are going to call it \mu since it's the "true" mean
The standard deviation (we are going to call it
) is

Next they draw a random sample of n=70 students, and they got a mean score (denoted by
) of 
The test then boils down to the question if the score of 613 obtained by the students in the sample is statistically bigger that the "true" mean of 600.
- So the Null Hypothesis 
- The alternative would be then the opposite 
The test statistic for this type of test takes the form

and this test statistic follows a normal distribution. This last part is quite important because it will tell us where to look for the critical value. The problem ask for a 0.05 significance level. Looking at the normal distribution table, the critical value that leaves .05% in the upper tail is 1.645.
With this we can then replace the values in the test statistic and compare it to the critical value of 1.645.

<h3>since 2.266>1.645 we can reject the null hypothesis.</h3>