Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:

Density=mass divided by volume, so d=120g/7ml
Newton's<span> First </span>Law of Motion<span>: I. Every object in a state of uniform </span>motion<span> tends to remain in that state of </span>motion<span> unless an external force is applied to it. This we recognize as essentially Galileo's concept of inertia, and this is often termed simply the "</span>Law<span> of Inertia".</span>
D.) In order to calculate both of them, we must know the "FORCE" on the system.