Answer:
A.) 1372 N
B.) 1316 N
C.) 1428 N
Explanation:
Given that a 140 kg load is attached to a crane, which moves the load vertically. Calculate the tension in the cable for the following cases:
a. The load moves downward at a constant velocity
At constant velocity, acceleration = 0
T - mg = ma
T - mg = 0
T = mg
T = 140 × 9.8
T = 1372N
b. The load accelerates downward at a rate 0.4 m/s??
Mg - T = ma
140 × 9.8 - T = 140 × 0.4
1372 - T = 56
-T = 56 - 1372
- T = - 1316
T = 1316N
C. The load accelerates upward at a rate 0.4 m/s??
T - mg = ma
T - 140 × 9.8 = 140 × 0.4
T - 1372 = 56
T = 56 + 1372
T = 1428N
Answer:
mass number = protons + neutrons
Answer:
28.2 m/s
Explanation:
The range of a projectile launched from the ground is given by:

where
v is the initial speed
g = 9.8 m/s^2 is the acceleration of gravity
is the angle at which the projectile is thrown
In this problem we have
d = 81.1 m is the range
is the angle
Solving for v, we find the speed of the projectile:

Answer:
The heat flux between the surface of the pond and the surrounding air is<em> 60 W/</em>
<em> </em>
Explanation:
Heat flux is the rate at which heat energy moves across a surface, it is the heat transferred per unit area of the surface. This can be calculated using the expression in equation 1;
q = Q/A ...............................1
since we are working with the convectional heat transfer coefficient equation 1 become;
q = h (
) ........................2
where q is the heat flux;
Q is the heat energy that will be transferred;
h is the convectional heat coefficient = 20 W/
.K;
is the surface temperature =
C 23°C + 273.15 = 296.15 K;
is the surrounding temperature =
C = 20°C + 273.15 = 293.15 K;
The values are substituted into equation 2;
q = 20 W/
.K ( 296.15 K - 293.15 K)
q = 20 W/
.K ( 3 K)
q = 60 W/
Therefore the heat flux between the surface of the pond and the surrounding air is 60 W/