Mark these points on the graph to form a right angled triangle.
Angle Y will be 90 degrees
Answer:
(a) 3.75
(b) 2.00083
(c) 0.4898
Step-by-step explanation:
It is provided that X has a continuous uniform distribution over the interval [1.3, 6.2].
(a)
Compute the mean of X as follows:

(b)
Compute the variance of X as follows:

(c)
Compute the value of P(X < 3.7) as follows:
![P(X < 3.7)=\int\limits^{3.7}_{1.3}{\frac{1}{6.2-1.3}}\, dx\\\\=\frac{1}{4.9}\times [x]^{3.7}_{1.3}\\\\=\frac{3.7-1.3}{4.9}\\\\\approx 0.4898](https://tex.z-dn.net/?f=P%28X%20%3C%203.7%29%3D%5Cint%5Climits%5E%7B3.7%7D_%7B1.3%7D%7B%5Cfrac%7B1%7D%7B6.2-1.3%7D%7D%5C%2C%20dx%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B4.9%7D%5Ctimes%20%5Bx%5D%5E%7B3.7%7D_%7B1.3%7D%5C%5C%5C%5C%3D%5Cfrac%7B3.7-1.3%7D%7B4.9%7D%5C%5C%5C%5C%5Capprox%200.4898)
Thus, the value of P(X < 3.7) is 0.4898.
Just add the two bases plus the lateral area. so it would be 706.5+706.5+471.
Answer: 1/5, 1/2, 0.
Step-by-step explanation:
given data:
no of cameras = 6
no of cameras defective = 3
no of cameras selected = 2
Let p(t):=P(X=t)
p(2)=m/n,
m=binomial(3,2)=3!/2!= 3
n=binomial(6,2)=6!/2!/4! = 15
p(3)= 3/15
= 1/5.
p(1)=m/n,
m=binomial(6,1)*binomial(2,2)=6!/1!/4!*2!/2!/0!= 7.5
n=binomial(6,2)= 15
p(2)= 7.5/15
= 1/2
p(0)=m/n,
m=0
p(0)=0