[Co(CN)₆]³⁻ → Yellow
[Co(NH₃)₆]³⁺ → Orange
[CoF₆]³⁻ → Blue
Explanation:
- All the given compounds have octahedral geometry but the ligand in each are different with the same metal ion.
- Ligands strength order: CN⁻ > NH₃ > F⁻
- The ligand CN will act as a strong field ligand so that the splitting is maximum when compared to NH₃ and F⁻
- If the splitting is more, the energy required for transition is more, and the wavelength is inversely proportional to energy.
- So CN complex will absorb at lower wavelength (yellow color)
The pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
<h3>What is pressure?</h3>
Pressure is the force exerted by any object on another object.
Given that, a and b separate 1 liter containers and exert pressure of 2 atm and 3 atm respectively.
When both gases a and b exert together, the pressure then
2 atm + 3 atm = 5 atm.
Thus, the pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
Learn more about pressure
brainly.com/question/12977546
#SPJ4
A catalyst is when a chemical reaction occurs faster than normal.
The system is unaffected during a catalyst because both forward and reverse reactions are affected, meaning that quilibrium will occur faster nothing will change.
Hope it helped,
BioTeacher101
Answer:
The answer is "
"
Explanation:
Please find the complete question in the attached file.
Equation:
at
at equilibrium
![p= 0.47 \ \ atm\\\\SO_2=3.3-0.47 = 2.83 \ \ atm\\\\O_2= 0.74 -\frac{0.47}{2}=0.74-0.235=0.555 \ atm\\\\K_P=\frac{[PSO_3]^2}{[PSO_2]^2[PO_2]}\\\\](https://tex.z-dn.net/?f=p%3D%200.47%20%5C%20%5C%20atm%5C%5C%5C%5CSO_2%3D3.3-0.47%20%3D%202.83%20%5C%20%5C%20atm%5C%5C%5C%5CO_2%3D%200.74%20-%5Cfrac%7B0.47%7D%7B2%7D%3D0.74-0.235%3D0.555%20%5C%20atm%5C%5C%5C%5CK_P%3D%5Cfrac%7B%5BPSO_3%5D%5E2%7D%7B%5BPSO_2%5D%5E2%5BPO_2%5D%7D%5C%5C%5C%5C)

<u>Answer:</u> The rate law expression for the given reaction is written below.
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^2[H_2]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BH_2%5D%5E2)
Hence, the rate law expression for the given reaction is written above.