Answer:
750 J
Explanation:
lets convert mass into kg first , 150 /1000 = 0.15 kg
kinetic energy =
= 
Answer:
Minimum thickness will be 100 nm
Explanation:
We have given refractive index is n = 1.5
Wavelength of the light incidence
= 600 nm
We have to find the smallest thickness of the film so that there will be minimum light reflect
For minimum thickness of non reflecting film
, here t is thickness,
is wavelength and n is refractive index
Putting all values 
So minimum thickness will be 100 nm
Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Answer:
Capacitive reactance of the capacitor is 68 ohms
Explanation:
It is given that,
Capacitance, 
Frequency, 
Capacitive reactance is given by :



or

So, the capacitive reactance of the capacitor is 68 ohms. Hence, this is the required solution.