<h2>
Answer:</h2>
(a) 10N
<h2>
Explanation:</h2>
The sketch of the two cases has been attached to this response.
<em>Case 1: The box is pushed by a horizontal force F making it to move with constant velocity.</em>
In this case, a frictional force
is opposing the movement of the box. As shown in the diagram, it can be deduced from Newton's law of motion that;
∑F = ma -------------------(i)
Where;
∑F = effective force acting on the object (box)
m = mass of the object
a = acceleration of the object
∑F = F - 
m = 50kg
a = 0 [At constant velocity, acceleration is zero]
<em>Substitute these values into equation (i) as follows;</em>
F -
= m x a
F -
= 50 x 0
F -
= 0
F =
-------------------(ii)
<em>Case 2: The box is pushed by a horizontal force 1.5F making it to move with a constant velocity of 0.1m/s²</em>
In this case, the same frictional force
is opposing the movement of the box.
∑F = 1.5F - 
m = 50kg
a = 0.1m/s²
<em>Substitute these values into equation (i) as follows;</em>
1.5F -
= m x a
1.5F -
= 50 x 0.1
1.5F -
= 5 ---------------------(iii)
<em>Substitute </em>
<em> = F from equation (ii) into equation (iii) as follows;</em>
1.5F - F = 5
0.5F = 5
F = 5 / 0.5
F = 10N
Therefore, the value of F is 10N
<em />
Answer:
a) yield strength

b) modulus of elasticity
strain calculation

strain for offset yield point

=0.0046-0.002 = 0.0026
now, modulus of elasticity
= 184615.28 MPa = 184.615 GPa
c) tensile strength

d) percentage elongation

e) percentage of area reduction
Answer:
The coefficient of static friction is 0.29
Explanation:
Given that,
Radius of the merry-go-round, r = 4.4 m
The operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 7.7 s.
We need to find the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding. For this the centripetal force is balanced by the frictional force.

v is the speed of cat, 

So, the least coefficient of static friction between the cat and the merry-go-round is 0.29.
Nitrogen is essential to life. It is a component of all proteins and can be found in all living organisms. Nitrogen in the atmosphere. <span>The molecules of nitrogen in the atmosphere can become usable for living things when they are broken apart during lightning strikes or fires, by certain types of bacteria, or by bacteria associated with bean plants.</span>