1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
8

Take schlatts love uwu (i cant spell)

Physics
1 answer:
7nadin3 [17]3 years ago
8 0

thank you so much for the schlatt

You might be interested in
A space probe is fired as a projectile from the Earth's surface with an initial speed of 2.05 104 m/s. What will its speed be wh
Elanso [62]

Answer:

The value is  v  =  2.3359 *10^{4} \ m/s

Explanation:

From the question we are told that

  The  initial speed is u =  2.05 *10^{4} \  m/s

 Generally the total energy possessed by the space probe when on earth is mathematically represented as

             T__{E}} =  KE__{i}} +  KE__{e}}

Here  KE_i is the kinetic energy of the space probe due to its initial speed which is mathematically represented as

          KE_i =   \frac{1}{2}  *  m  *  u^2

=>       KE_i =   \frac{1}{2}  *  m  *  (2.05 *10^{4})^2

=>       KE_i =  2.101 *10^{8} \ \ m \ \ J

And  KE_e is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

       KE_e =  \frac{1}{2}  *  m *  v_e^2

Here v_e is the escape velocity from earth which has a value v_e =  11.2 *10^{3} \  m/s

=>    KE_e =  \frac{1}{2}  *  m *  (11.3 *10^{3})^2

=>    KE_e =  6.272 *10^{7} \  \  m  \ \   J

Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

        KE_p =  \frac{1}{2}  *  m *  v^2

Generally from the law energy conservation we have that

        T__{E}} =  KE_p

So

       2.101 *10^{8}  m  +  6.272 *10^{7}  m  =   \frac{1}{2}  *  m *  v^2

=>     5.4564 *10^{8} =   v^2

=>     v =  \sqrt{5.4564 *10^{8}}

=>     v  =  2.3359 *10^{4} \ m/s

4 0
3 years ago
. If force (F), work (W) and velocity (v) are taken as fundamental quantities.
alex41 [277]

Answer:

∴ [T]=[WF−1V−1]

Hope this answer is right!!

7 0
3 years ago
Read 2 more answers
Argon gas enters steadily an adiabatic turbine at 900 kPa and 450C with a velocity of 80 m/s and leaves at 150 kPa with a veloc
Crazy boy [7]

Answer:

Temperature at the exit = 267.3 C

Explanation:

For the steady energy flow through a control volume, the power output is given as

W_{out}= -m_{f}(h_{2}-h_{1} + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

Inlet area of the turbine = 60cm^{2}= 0.006m^{2}

To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.

Assuming Argon behaves as an Ideal gas, we have the specific volume v_{1}

as

v_{1}=\frac{RT_{1}}{P_{1}}=\frac{0.2081\times723}{900}=0.1672m^{3}/kg

m_{f}=\frac{1}{v_{1}}\times A_{1}V_{1} = \frac{1}{0.1672}\times(0.006)(80)=2.871kg/sec

for Ideal gasses, the enthalpy change can be calculated using the formula

h_{2}-h_{1}=C_{p}(T_{2}-T_{1})

hence we have

W_{out}= -m_{f}((C_{p}(T_{2}-T_{1}) + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

250= -2.871((0.5203(T_{2}-450) + \frac{150^{2}}{2\times 1000} - \frac{80^{2}}{2\times 1000})

<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>

evaluating the above equation, we have T_{2}=267.3C

Hence, the temperature at the exit = 267.3 C

5 0
3 years ago
Complete the equation???
soldi70 [24.7K]

Here in nuclear reaction we can say that sum of neutrons and protons in reactant side and product side will be same always

Here mass number on the product side is given to us

so sum of mass number is given as

A_1 + A_2 = 265 + 1 = 266

now on the reactant side also the number must be same

A_1' + A_2' = 58 + x

now we will have

58 + x = 266

x = 208

Now number of protons on product side is given as

P_1 + P_2 = 108 + 0

now we also know that atomic number of Fe is 26

so now we will have

P_1' + P_2' = 108

26 + P_2' = 108

P_2' = 82

now the equation is given as

_{26}^{58}Fe + _{82}^{208}Pb = _{108}^{266}Hs + _0^1X

8 0
3 years ago
If you see that a hot-air balloon is rising above the top of a hill, what is the top of the hill called? A. delta point B. dista
MrRissso [65]
The answer is reference point. 
5 0
3 years ago
Read 2 more answers
Other questions:
  • There are many risks associated with nuclear power. Which is NOT a risk associated with nuclear power?
    14·2 answers
  • What should you do when a crate is too heavy to be lifted by the pulley?
    13·1 answer
  • When iron is exposed to oxygen it rusts or oxidizes. Which of these represents the balanced equation for this chemical change?
    10·2 answers
  • If the heart becomes damaged or weakened, how will this affect the body’s systems?
    14·2 answers
  • (Please help ASAP)
    5·2 answers
  • Which of the following include exact numbers? a) The speed of light in a vacuum is a physical constant; to the nearest m/s, it i
    5·1 answer
  • If a gun is sighted to hit targets that are at the same height as the gun and 95 m away, how low will the bullet hit if aimed di
    7·1 answer
  • A measure of how easily current will pass through a material ?
    11·1 answer
  • In an electric motor, electrical energy is converted into
    9·1 answer
  • The concentration of water vapor in the atmosphere known as
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!