Answer:
The value is 
Explanation:
From the question we are told that
The initial speed is 
Generally the total energy possessed by the space probe when on earth is mathematically represented as

Here
is the kinetic energy of the space probe due to its initial speed which is mathematically represented as
=>
=> 
And
is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

Here
is the escape velocity from earth which has a value 
=> 
=> 
Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

Generally from the law energy conservation we have that
So

=> 
=> 
=> 
Answer:
∴ [T]=[WF−1V−1]
Hope this answer is right!!
Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 
Here in nuclear reaction we can say that sum of neutrons and protons in reactant side and product side will be same always
Here mass number on the product side is given to us
so sum of mass number is given as

now on the reactant side also the number must be same

now we will have


Now number of protons on product side is given as

now we also know that atomic number of Fe is 26
so now we will have



now the equation is given as
