Given the expression,

We will have to rationalize the denominator first. To rationalize the denominator we have to multiply the numerator and denominator both by the square root part of the denominator.
![[(8x-56x^2)(\sqrt{14x-2})]/[(\sqrt{14x-2})(\sqrt{14x-2})]](https://tex.z-dn.net/?f=%20%5B%288x-56x%5E2%29%28%5Csqrt%7B14x-2%7D%29%5D%2F%5B%28%5Csqrt%7B14x-2%7D%29%28%5Csqrt%7B14x-2%7D%29%5D%20)
If we have
, we will get
by multiplying them. And
.
So here in the problem, we will get,
![[(8x-56x^2)(\sqrt{14x-2})]/(14x-2)](https://tex.z-dn.net/?f=%20%5B%288x-56x%5E2%29%28%5Csqrt%7B14x-2%7D%29%5D%2F%2814x-2%29%20)
Now in the numerator we have
. We can check 8x is common there. we will take out -8x from it, we will get,


And in the denominator we have
. We can check 2 is common there. If we take out 2 from it we will get,

So we can write the expression as
![[(-8x)(7x-1)(\sqrt{14x-2})]/[2(7x-1)]](https://tex.z-dn.net/?f=%20%5B%28-8x%29%287x-1%29%28%5Csqrt%7B14x-2%7D%29%5D%2F%5B2%287x-1%29%5D%20)
is common to the numerator and denominator both, if we cancel it we will get,

We can divide -8 by the denominator, as -8 os divisible by 2. By dividing them we will get,


So we have got the required answer here.
The correct option is the last one.
Answer:
8, 13, 18
Step-by-step explanation:
If we want the mean to be 13, and there are 3 integers, that means the sum of all 3 integers must be 39. I started at 13 and counted 5 up and 5 down, which already makes sure of the range and the mean is 13 (since it's balanced with 13 being the middle), therefore, 13+5 is 18, 13-5=8.
What’s a good start I don’t see anything
Arithmetic sequences have a common difference between consecutive terms.
Geometric sequences have a common ratio between consecutive terms.
Let's compute the differences and ratios between consecutive terms:
Differences:

Ratios:

So, as you can see, the differences between consecutive terms are constant, whereas ratios vary.
So, this is an arithmetic sequence.
The answer is c bc I just know