The points which represents the vertices of the given equation are; (15, −2) and (−1, −2).
<h3>Which points among the answer choices represents the vertices of the ellipse whose equation is given?</h3>
The complete question gives the equation of the ellipse as; (x-7)²/64+(y+2)²/9=1.
Since, It follows from convention that general equation of ellipse with centre as (h, k) takes the form;
(x-h)²/a² +(y-k)²/b² = 1.
Consequently, it follows from observation that the value of a and b in the given equation in the task content is; √64 = 8 and √9 = 3 respectively.
Since, 8 > 3, The vertices of the ellipse are given by; (h±a, k).
The vertices in this scenario are therefore;
(7+8, -2) and (7-8, -2).
= (15, -2) and (-1, -2).
Read more on vertices of an ellipse;
brainly.com/question/9525569
#SPJ1
 
        
             
        
        
        
Answer:
third in line
Step-by-step explanation:
hope this helps
 
        
                    
             
        
        
        
Answer:
25.67
Step-by-step explanation:
10 to the power of 4 is 10,000.
That means we have to do 10,000 divided by 389.5, getting 25.67
Plz Brainliest, need 4 more to get to Expert :)