It would be 48in because 4 times 6 is 24 and 24 times 2 is 48
Answer: see below
<u>Step-by-step explanation:</u>
C(x) = 39 when 0 < x ≤ 1.0
C(x) = 63 when 1.0 < x ≤ 2.0
C(x) = 87 when 2.0 < x ≤ 3.0
C(x) = 111 when 3.0 < x ≤ 4.0
C(x) = 135 when 4.0 < x ≤ 5.0
C(x) = 159 when 5.0 < x ≤ 6.0
Based on the information I provided above, the answers are:
a) x= 0.6, C(x) = 1.0
x = 1.0, C(x) = 39
x = 1.1, C(x) = 63
x = 2.5, C(x) = 87
x = 3.0, C(x) = 87
x = 4.8, C(x) = 135
x = 5.0, C(x) = 135
x = 5.3, C(x) = 159
b) If C(x) = 87, then 2.0 < x ≤ 3.0
c) Domain (all possible x-values): 0 < x ≤ 6.0
d) Range (all possible y-values): {39, 63, 87, 111, 135, 159}
Answer:
- zeros: x = -3, -1, +2.
- end behavior: as x approaches -∞, f(x) approaches -∞.
Step-by-step explanation:
I like to use a graphing calculator for finding the zeros of higher order polynomials. The attachment shows them to be at x = -3, -1, +2.
__
The zeros can also be found by trial and error, trying the choices offered by the rational root theorem: ±1, ±2, ±3, ±6. It is easiest to try ±1. Doing so shows that -1 is a root, and the residual quadratic is ...
x² +x -6
which factors as (x -2)(x +3), so telling you the remaining roots are -3 and +2.
___
For any odd-degree polynomial with a positive leading coefficient, the sign of the function will match the sign of x when the magnitude of x gets large. Thus as x approaches negative infinity, so does f(x).
Answer:
B
Step-by-step explanation: