Answer:
<h3>

</h3>
Step-by-step explanation:
Given,
diameter ( d ) = 12 in
height ( h ) = 15 in
<u>finding </u><u>the </u><u>radius </u><u>of </u><u>a </u><u>cylinder</u>
Radius is just half of diameter.
Radius ( r ) = 12 / 2 = 6 in
<u>finding </u><u>the </u><u>volume </u><u>of </u><u>a </u><u>cylinder </u><u>having </u><u>radius </u><u>of </u><u>6</u><u> </u><u>in </u><u>and </u><u>height </u><u>of </u><u>1</u><u>5</u><u> </u><u>in</u>
Volume of a cylinder = <u>
</u>
⇒
⇒
⇒<u>
</u>
Hope I helped!
Best regards!!
Answer:
slightly more than 15
Step-by-step explanation:
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8, 10}, and C = {1, 2, 4, 5, 8, 9}. List the element
Leto [7]
Answer:



Step-by-step explanation:
Required
Determine



Solving 
implies that elements in U but not in C
Since




<em>Because there's no intersection between both</em>
Solving 
First, we need to determine A n C




Solving 
First, we need to determine B n C


So:


Answer:
Option b.
![4x^3y^2\sqrt[3]{4xy}](https://tex.z-dn.net/?f=4x%5E3y%5E2%5Csqrt%5B3%5D%7B4xy%7D)
Step-by-step explanation:
we have the expression
![\sqrt[3]{256x^{10}y^{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%7D)
Remember these properties
![\sqrt[n]{x^m} =x^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Em%7D%20%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)


so
![\sqrt[3]{256x^{10}y^{7}}=(256x^{10}y^{7})^{\frac{1}{3}}=(256^{\frac{1}{3}})(x^{\frac{10}{3}})(y^{\frac{7}{3}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%7D%3D%28256x%5E%7B10%7Dy%5E%7B7%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%28256%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%29%28x%5E%7B%5Cfrac%7B10%7D%7B3%7D%7D%29%28y%5E%7B%5Cfrac%7B7%7D%7B3%7D%7D%29)
Rewrite the expression



substitute

Applying properties of exponents

simplify


![4x^3y^2\sqrt[3]{4xy}](https://tex.z-dn.net/?f=4x%5E3y%5E2%5Csqrt%5B3%5D%7B4xy%7D)