Let First Sphere be the Original Sphere
its Radius be : r
We know that Surface Area of the Sphere is : 4π × (radius)²
⇒ Surface Area of the Original Sphere = 4πr²
Given : The Radius of Original Sphere is Doubled
Let the Sphere whose Radius is Doubled be New Sphere
⇒ Surface of the New Sphere = 4π × (2r)² = 4π × 4 × r²
But we know that : 4πr² is the Surface Area of Original Sphere
⇒ Surface of the New Sphere = 4 × Original Sphere
⇒ If the Radius the Sphere is Doubled, the Surface Area would be enlarged by factor : 4
Tbh it’s 600$ bc lol i the only thing u know ??
Step-by-step explanation:
"Solutions to the equation" just means that they are points on the line. To find out if these two points land on this line, plug each one in, like this:
1.5 = (1/4)(1) + (5/4)
1.5 = (1/4) + (5/4)
1.5 = (6/4)
1.5 = 1.5
Since the expression is true, this point is on the line.
Do the same process for the second point (remember a point is formatted (x,y)) and see if it is also a point on the line.
To find the x-intercept, simply plug in 0 for y and see what you get. It should look like (x,0).
B) 4/9 is correct
Mark with crown!
If the first set began to increase, than the other set tends to decrease.