Couple things to note:
- Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept.
- Slope can be calculated using any two points on a line and the formula y₁ - y₂ / x₁ - x₂.
For the first problem, we know the slope of Function A is 6 (refer to slope-intercept form above). To compare the slopes of Function A and Function B, first find the slope of Function B.
Use y₁ - y₂ / x₁ - x₂. Two points on the line are (0, 1) and (-1, -2). Plug these into the formula accordingly and solve for slope.
y₁ - y₂ / x₁ - x₂
1 - (-2) / 0 - (-1)
1 + 2 / 0 + 1
3 / 1
3
The slope of Function B is 3. This is half of 6 (the slope of Function A), so the correct answer to question 1 is the first option: Slope of Function B = 2 × Slope of Function A.
For the second problem, substitute m and b in y = mx + b according to the graph. b is the y-intercept (the point at which the line intersects the y-axis); it is (0, -4), or -4. This gives us
y = mx - 4
We must now find m. Follow the same steps above to find slope. Our two points are (-2, 0) and (0, -4).
y₁ - y₂ / x₁ - x₂
0 - (-4) / -2 - 0
0 + 4 / -2
4 / -2
-2
Substitute.
y = -2x - 4
The first option is the correct answer.
First simplify the like terms.
3 (2x+3y)
Now multiply 3 by 2x then 3 by 3y
6x + 9y
And that is the final answer
X = 42 - 19, so A - x = 23
F(x+h) = 2(x+h) +3= 2x + 2h +3
f(x) = 2x + 5
f(x+h) - f(x) = 2x + 2h + 3- 2x - 3= 2h
[f(x+h) - f(x)]/h = 2h/h = 2
Answer:
A. Minimum = 54, Q1= 69.5, Median = 75, Q3= 106, Maximum = 183
Step-by-step explanation:
Arranging the data set in order from least to greastest we get:
54, 68, 71, 72, 75, 84, 104, 108, 183
From this, we can see that the minimum value is 54 and the maximum value is 183.
Taking a number off one by one on each side of the data set gives the median. In the middle lies 75, so that is our median
To find quartile ranges, split the data set into two where the median lies, then, find the median of those two data sets. The medians will be the values of the upper (Q3) and lower quartiles (Q1).
Q1: 54, 68, 71, 72
68 + 71 = 139
139 ÷ 2 = 69.5
-----
Q3: 84, 104, 108, 183
104 + 108 = 212
212 ÷ 2 = 106
Option A is the only answer with all of these values, therefore, it is the answer.
hope this helps!