Answer: Oxygen
Explanation: Photosynthesis is a process by which plants use carbon dioxide, water and sunlight to produce glucose and oxygen.
Photosynthetic reactions are divided into two phases: 1). light dependent reactions and 2). light independent reactions.
1) In light dependent reactions, chlorophyll and other light absorbing pigments absorb light energy and conserve it as ATP and NADPH with the simultaneous liberation of oxygen. This reaction occurs only when plants are illuminated. In light reactions, light energy is used to split water molecules into hydrogen ions and oxygen, the hydrogen ions produced are transferred to NADP+ to form NADPH, ATP is also produced in light dependent reactions.
2) In light independent reactions, ATP and NADPH produced in the light dependent reactions are used to drive the light independent reactions in which ATP and NADPH are used to reduce CO2 to form trioses, starch, sucrose and other products derived from them.
Answer:
The protein likely travels through a common lumen shared by thylakoid membranes and grana, and cannot easily diffuse through the thylakoid membrane.
Explanation:
There is a lot of scientific research in which a specific molecule can be labeled with some fluorescent marker (usually carbon 14). This type of marking allows the researcher to make observations about the movement of these molecules, as you can see in the question above. About the research shown in the question, the researcher realized that the protein labeled with the fluorescent marker moved between the grana and was always in the lumen, so she can conclude that the selocomovement protein moved through the lumen that is shared between the tilacoid membranes and the grana.