Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m
Answer:
3:15 cause a mirror cant change time
Step-by-step explanation:
go in ur mirror and look at the time did it somehow get darker or lighter???
Answer:
Minimum value of function
is 63 occurs at point (3,6).
Step-by-step explanation:
To minimize :

Subject to constraints:

Eq (1) is in blue in figure attached and region satisfying (1) is on left of blue line
Eq (2) is in green in figure attached and region satisfying (2) is below the green line
Considering
, corresponding coordinates point to draw line are (0,9) and (9,0).
Eq (3) makes line in orange in figure attached and region satisfying (3) is above the orange line
Feasible region is in triangle ABC with common points A(0,9), B(3,9) and C(3,6)
Now calculate the value of function to be minimized at each of these points.

at A(0,9)

at B(3,9)

at C(3,6)

Minimum value of function
is 63 occurs at point C (3,6).
Answer:
(98/100)*110 = $107.8
Step-by-step explanation:
Answer:
The equation of the circle is (x - 2)² + (y + 5)² = 144 ⇒ A
Step-by-step explanation:
The form of the equation of the circle is (x - h)² + (y - k)² = r², where
- r is the radius of the circle
- h, k are the coordinates of the center of the circle
Let us solve the question
∵ The center of the circle is at (2, -5)
→ From the rule above
∴ h = 2 and k = -5
∵ The radius of the circle is 12
∴ r = 12
→ Substitute the values of r, h, and k in the form of the equation above
∵ (x - 2)² + (y - -5)² = (12)²
∴ (x - 2)² + (y + 5)² = 144
∴ The equation of the circle is (x - 2)² + (y + 5)² = 144