1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
3 years ago
7

Do all mutations affect the STRUCTURE of proteins ? Do all mutations affect the FUNCTIONS of proteins??

Chemistry
1 answer:
finlep [7]3 years ago
7 0

Answer:

1. No; only a small percentage of mutations cause genetic disorders—most have no impact on health or development.

2. No. For example, some mutations alter a gene's DNA sequence but do not change the function of the protein made by the gene.

Explanation:

You might be interested in
For a tablet containing 500. mg of vitamin C, calculate how many ml of 0.095 M NaOH is required to reach the equivalence point.
Gala2k [10]

Answer:

mL of NaOH required =29.9mL

Explanation:

Let us calculate the moles of vitamin C in the tablet:

The molar mass of Vitamin C is 176.14 g/mole

moles=\frac{mass}{molarmass}=\frac{500mg}{176.14}=\frac{0.5}{176.14}=0.0028

Thus we need same number of moles of NaOH to reach the equivalence point.

For NaOH solution:

moles=MolarityXvolume=0.095Xvolume

0.00283=0.095Xvolume

volume=0.0299L=29.9mL

7 0
3 years ago
When carbon is burned in air, it reacts with oxygen to form carbon dioxide. When 20.4 g g of carbon were burned in the presence
Aleonysh [2.5K]

Answer:

C + O2 -> CO2

C 20.4/12 = 1.7

O 70.4-16.0/16=3.4

CO2 1.7 mol * 44 = 74.8

3 0
3 years ago
How many pencils are in 20 OWLS
AVprozaik [17]
Owls means a mammalian species
It is incorrect question
4 0
3 years ago
Read 2 more answers
I need help with this for chemistry. I don’t understand now to do this.
alina1380 [7]

The ipR.O.B.O.T states

 aA+bB⇌ cC+dD  

the equilibrium constant is written as follows:

Kc=[C]c[D]d[A]a[B]b  

The ICE Table

The easiest approach for calculating equilibrium concentrations is to use an ICE Table, which is an organized method to track which quantities are known and which need to be calculated. ICE stands for:

"I" is for the "initial" concentration or the initial amount

"C" is for the "change" in concentration or change in the amount from the initial state to equilibrium

"E" is for the "equilibrium" concentration or amount and represents the expression for the amounts at equilibrium.

For the gaseous hydrogenation reaction below, what is the concentration for each substance at equilibrium?

C2H4(g)+H2(g)⇌C2H6(g)(1)

with  Kc=0.98  characterized from previous experiments and with the following initial concentrations:

[C2H4]0=0.33  

[H2]0=0.53  

SOLUTION

First the equilibrium expression is written for this reaction:

Kc=[C2H6][C2H4][H2]=0.98(2)

ICE Table

The concentrations for the reactants are added to the "Initial" row of the table. The initial amount of  C2H6  is not mentioned, so it is given a value of 0. This amount will change over the course of the reaction.

ICE

C2H4  

H2  

C2H6  

Initial

0.33

0.53

0

Change

Equilibrium

ICE

C2H4  

H2  

C2H6  

Initial

0.33

0.53

0

Change

-x

-x

+x

Equilibrium

Equilibrium is determined by adding "Initial" and "Change together.

ICE

C2H4  

H2  

C2H6  

Initial

0.33

0.53

0

Change

-x

-x

+x

Equilibrium

0.33-x

0.53-x

x

The expressions in the "Equilibrium" row are substituted into the equilibrium constant expression to find calculate the value of x. The equilibrium expression is simplified into a quadratic expression as shown:

0.98=x(0.33−x)(0.53−x)(3)

0.98=xx2−0.86x+0.1749(4)

0.98(x2−0.86x+0.1749)=x(5)

0.98x2−0.8428x+0.171402=x(6)

0.98x2−1.8428x+0.171402=0(7)

The quadratic formula can be used as follows to solve for x:

x=−b±b2−4ac−−−−−−−√2a(8)

x=−0.1572±(−0.1572)2−4(0.98)(0.171402)−−−−−−−−−−−−−−−−−−−−−−−−−√2(0.98)(9)

x=1.78 or0.098(10)

Because there are two possible solutions, each must be checked to determine which is the real solution. They are plugged into the expression in the "Equilibrium" row for  [C2H4]Eq :

[C2H4]Eq=(0.33−1.78)=−1.45(11)

[C2H4]Eq=(0.33−0.098)=0.23(12)

If  x=1.78  then  [C2H4]Eq  is negative, which is impossible, therefore,  x  must equal 0.098.

So:

[C2H4]Eq=0.23M(13)

[H2]Eq=(0.53−0.0981)=0.43M(14)

[C2H6]Eq=0.098M(15)

Problems

1. Find the concentration of iodine in the following reaction if the equilibrium constant is 3.76 X 103, and 2 mol of iodine are initially placed in a 2 L flask at 100 K.

I2(g)⇌2I−(aq)(16)

2. What is the concentration of silver ions in 1.00 L of solution with 0.020 mol of AgCl and 0.020 mol of Cl- in the following reaction? The equilibrium constant is 1.8 x 10-10.

AgCl(s)⇌Ag+(aq)+Cl−(aq)(17)

3. What are the equilibrium concentrations of the products and reactants for the following equilibrium reaction?

Initial concentrations:   [HSO−4]0=0.4   [H3O+]0=0.01   [SO2−4]0=0.07   K=.012  

HSO−4(aq)+H2O(l)⇌H3O+(aq)+SO2−4(aq)(18)

4. The initial concentration of HCO3 is 0.16 M in the following reaction. What is the H+ concentration at equilibrium? Kc=0.20.

H2CO3⇌H+(aq)+CO2−3(aq)(19)

5.The initial concentration of PCl5 is 0.200 moles per liter and there are no products in the system when the reaction starts. If the equilibrium constant is 0.030, calculate all the concentrations at equilibrium.

Solutions

1.

I2  

I−  

Initial

2mol/2L = 1 M

0

Change

−x  

+2x  

Equilibrium

1−x  

2x  

At equilibrium

Kc=[I−]2[I2]  

3.76×103=(2x)21−x=4x21−x  

cross multiply

4x2+3.76.103x−3.76×103=0  

apply the quadratic formula:

−b±b2−4ac−−−−−−−√2a  

with:  a=4 ,  b=3.76×103   c=−3.76×103 .

The formula gives solutions of of x=0.999 and -940. The latter solution is unphysical (a negative concentration). Therefore, x=0.999 at equilibrium.

[I−]=2x=1.99M(20)

[I2]=1−x=1−.999=0.001M(21)

2.

Ag+  

Cl−  

Initial

0

0.02mol/1.00 L = 0.02 M

Change

+x  

+x  

Equilibrium  

0.02+x  

Kc=[Ag−][Cl−](22)

1.8×10−10=(x)(0.02+x)(23)

x2+0.02x−1.8×1010=0(24)

x=9×10−9(25)

[Ag−]=x=9×10−9(26)

[Cl−]=0.02+x=0.020(27)

3.

H2CO3  

SO2−4  

H3O+  

Initial

0.4

0.01

0.07

Change

−x  

Equilibrium

0.4−x  

0.01+x  

0.07+x  

Kc=[SO2−4][H3O+]H2CO3(28)

0.012=(0.01+x)(0.07+x)0.4−x(29)

cross multiply and get:

x2+0.2x−0.0041=0(30)

apply the quadratic formula

x = 0.0328

[H2CO3]=0.4-x=0.4-0.0328=0.3672

[S042-]=0.01+x=0.01+0.0328=0.0428

[H30]=0.07+x=0.07+0.0328=0.1028

4.

H2CO3

H+  

CO2−3  

Initial

.16

0

Change

-x

Equilibrium

.16-x

apply the quadratic equation

x=0.1049

[H+]=x=0.1049

5. First write out the balanced equation:

PCl5(g)⇌PCl3(g)+Cl2(g)  

PCl5  

PCl3  

Cl2  

Initial

0.2

0

Change

-x

Equilibrium

0.2-x

Kc=[PC3][Cl2][PCl5](31)

0.30=x20.2−x(32)

Cross multiply:

x2+0.03x−0.006=0(33)

Apply the quadratic formula:

x=0.064

[PCl5]=0.2-x=0.136

[PCl3]=0.064

[Cl2]=0.064

Information is verified by Brainly Incorporations.

Do not copy this information without the consent of Brainly Inc.

ipR.O.B.O.T is an international Internet Protocol Recessive Observation Branch Organization Technologies

4 0
3 years ago
What do engineers use to test their designs of new technologies?
erica [24]
The answer Fam is B) Models
4 0
4 years ago
Read 2 more answers
Other questions:
  • `which of the following is true ?
    5·2 answers
  • Which medium allows sound to travel faster, air or water?
    6·2 answers
  • Please help with my 1.11 asignment and you get 20 points
    14·1 answer
  • Explain why you can boil water in a pot without the pot also boiling
    15·1 answer
  • How are isotopes of the same chemical element alike? How are they different?
    8·1 answer
  • Draw a resonance structure, complete with all formal charges and lone (unshared) electron pairs, that shows the resonance intera
    7·1 answer
  • The volume of water in a graduated cylinder was increased from 52.0 mL to 75.5 mL when a piece of irregular metal was placed in
    6·2 answers
  • The force that holds protons together is called...?
    10·1 answer
  • 6. Why does the sun seem to change position in the sky?
    10·1 answer
  • a 1.513 g sample of khp (c8h5o4k) is dissolved in 50.0 ml of di water. when the khp solution was titrated with naoh, 14.8 ml was
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!