Compounds are composed of 2 or more different elements, ionically and or covalently bonded that results in substances containing elements in their respective definite amounts within the compound.
Answer:
The molecules of solid CO2 are much closer together than the molecules of CO2 gas.
<em>it is given as as under: :
</em>
Answer:
OBr₂
Explanation:
<em>The ionic character depends on the difference of electronegativity between the elements. The higher ΔEN, the greater the ionic character.</em>
SBr₂
ΔEN = |EN(S)-EN(Br)| = |2.5-2.8| = 0.3
OBr₂
ΔEN = |EN(O)-EN(Br)| = |3.5-2.8| = 0.7
SeCl₂
ΔEN = |EN(Se)-EN(Cl)| = |2.4-3.0| = 0.6
TeI₂
ΔEN = |EN(Te)-EN(I)| = |2.1-2.5| = 0.4
SCl₂
ΔEN = |EN(S)-EN(Cl)| = |2.5-3.0| = 0.5
OBr₂ is the molecule with the most ionic character.
Answer:
Newton's Second Law
Explanation:
Newton's second law basically states that the acceleration of a body which is produced by a net force is directly proportional to the magnitude of net force applied in the same direction.
This tells us that
F is directly proportional to a
⇒ F= ma
So we can also state from the above equation, that when we have more mass, we need more net force to accelerate it. Here, we are keeping the acceleration constant so we can surely say that force and mass varies directly.
Therefore, we have made good use of Newton's Second Law of motion to arrive at this conclusion.