Answer:
4(t+25) = (t+50) - 4 (0.15t)
4t + 100 = t + 50 - 0.6t
4t + 100 = 50 + 0.4t
4t - 0.4t + 100 = 50 + 0.4t - 0.4t
3.6t + 100 = 50
3.6t + 100 - 100 = 50 - 100
3.6t = -50
3.6t / 3.6 = -50 / 3.6
t = - 13.9
Step-by-step explanation:
Answer:
0.4
Step-by-step explanation:
33+72+55+20=180
probability of choosing of choosing a maths teacher=72/180
=0.4
Answer:
0
giomarsh
15 answers
24 people helped
Answer:
eeeeeeeeee
Explanation:
Step-by-step explanation:
Step-by-step explanation:
<h3><u>Given</u><u>:</u><u>-</u></h3>
(√3+√2)/(√3-√2)
<h3><u>To </u><u>find</u><u>:</u><u>-</u></h3>
<u>Rationalised</u><u> form</u><u> </u><u>=</u><u> </u><u>?</u>
<h3><u>Solution</u><u>:</u><u>-</u></h3>
We have,
(√3+√2)/(√3-√2)
The denominator = √3-√2
The Rationalising factor of √3-√2 is √3+√2
On Rationalising the denominator then
=>[(√3+√2)/(√3-√2)]×[(√3+√2)/(√3+√2)]
=>[(√3+√2)(√3+√2)]×[(√3-√2)(√3+√2)]
=>(√3+√2)²/[(√3-√2)(√3+√2)]
=> (√3+√2)²/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
=> (√3+√2)²/(3-2)
=> (√3-√2)²/1
=> (√3+√2)²
=> (√3)²+2(√3)(√2)+(√2)²
Since , (a+b)² = a²+2ab+b²
Where , a = √3 and b = √2
=> 3+2√6+2
=> 5+2√6
<h3><u>Answer:-</u></h3>
The rationalised form of (√3+√2)/(√3-√2) is 3+2√6+2.
<h3>
<u>Used formulae:-</u></h3>
→ (a+b)² = a²+2ab+b²
→ (a-b)² = a²-2ab+b²
→ (a+b)(a-b) = a²-b²
→ The Rationalising factor of √a-√b is √a+√b
Answer:
A
Step-by-step explanation: