(-a^3b^2*-a^-2b^-3)^-2/2a^2b^-3
= a^4b^9/2a^8b^4
=b^5/2a^4
so your answer is b^5/2a^4
Hey,
So if you are working 8 hrs a day and $15 an hour multiply those together, that would give you $120 a day, and multiplying that by 5 days a week that would make $600 a week.
Answer:
Step-by-step explanation:
Simplify expression with rational exponents can look like a huge thing when you first see them with those fractions sitting up there in the exponent but let's remember our properties for dealing with exponents. We can apply those with fractions as well.
Examples
(a) 
From above, we have a power to a power, so, we can think of multiplying the exponents.
i.e.


Let's recall that when we are dealing with exponents that are fractions, we can simplify them just like normal fractions.
SO;


Let's take a look at another example

Here, we apply the
to both 27 and 


Let us recall that in the rational exponent, the denominator is the root and the numerator is the exponent of such a particular number.
∴
![= \Bigg (\sqrt[3]{27}^{5} \times x^{10} }\Bigg)](https://tex.z-dn.net/?f=%3D%20%5CBigg%20%28%5Csqrt%5B3%5D%7B27%7D%5E%7B5%7D%20%5Ctimes%20x%5E%7B10%7D%20%7D%5CBigg%29)


Answer:
1) Fail to reject the Null hypothesis
2) We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.
Step-by-step explanation:
A university administrator wants to test if there is a difference between the distance men and women travel to class from their current residence. So, the hypothesis would be:

The results of his tests are:
t-value = -1.05
p-value = 0.305
Degrees of freedom = df = 21
Based on this data we need to draw a conclusion about test. The significance level is not given, but the normally used levels of significance are 0.001, 0.005, 0.01 and 0.05
The rule of the thumb is:
- If p-value is equal to or less than the significance level, then we reject the null hypothesis
- If p-value is greater than the significance level, we fail to reject the null hypothesis.
No matter which significance level is used from the above mentioned significance levels, p-value will always be larger than it. Therefore, we fail to reject the null hypothesis.
Conclusion:
We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.