It would be: 2*3 = 6 oxygen atoms
OPTION D IS YOUR ANSWER......
The given question is incomplete. The complete question is as follows.
A certain liquid has a normal boiling point of
and a boiling point elevation constant
. A solution is prepared by dissolving some sodium chloride (NaCl) in 6.50 g of X. This solution boils at
. Calculate the mass of NaCl that was dissolved. Round your answer to significant digits.
Explanation:
As per the colligative property, the elevation in boiling point will be as follows.
T = boiling point of the solution =
= boiling point of the pure solvent = 
= elevation of boiling constant = 
We will calculate the molality as follows.
molality = 
i = vant hoff's factor
As NaCl is soluble in water and dissociates into sodium and chlorine ions so i = 2.
Putting the given values into the above formula as follows.


m = 100 g
Therefore, we can conclude that 100 g of NaCl was dissolved.
Answer:
T° freezing solution → -11.3°C
T° boiling solution → 103.1 °C
Explanation:
Assuming 100 % dissociation, we must find the i, Van't Hoff factor which means "the ions that are dissolved in solution"
This salt dissociates as this:
SnCl₄ (aq) → 1Sn⁴⁺ (aq) + 4Cl⁻ (aq) (so i =5)
The formula for the colligative property of freezing point depression and boiling point elevation are:
ΔT = Kf . m . i
where ΔT = T° freezing pure solvent - T° freezing solution
ΔT = Kb . m . i
where ΔT = T° boiling solution - T° boiling pure solvent
Freezing point depression:
0° - T° freezing solution = 1.86°C/m . 1.22 m . 5
T° freezing solution = - (1.86°C/m . 1.22 m . 5) → -11.3°C
Boiling point elevation:
T° boiling solution - 100°C = 0.512 °C/m . 1.22 m . 5
T° boiling solution = (0.512 °C/m . 1.22 m . 5) + 100°C → 103.1 °C
Answer:
Explanation:
Nitrate of most of the elements are water soluble . Aluminium nitrate is also one of them . Aluminium nitrate is easily dissolved in water . It forms hydrated salt whose formula is as follows
Al( NO₃ )₃ . 9H₂O
It is a white crystalline salt . It is also soluble in alcohol.
The steeper it is the more it moves