Answer:
0.05
moles
Explanation:
In a mole of any substance, there exist
6.02⋅1023
units of that substance.
So here, we got:
3.01⋅1022Mg atoms⋅1mol6.02⋅1023M gatoms=0.05mol
<span>Both plants and animals fight pathogens is because both have an ant. </span><span>The answer is B.
P</span>athogens is <span>a bacterium, virus, or other microorganism that can cause disease.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
use variable
1K₂MnF₆ + aSbF₅⇒ bKSbF₆ + cMnF₃ + dF₂
K, left=2,right=b⇒b=2
Mn, left=1, right=c⇒c=1
Sb, left=a, right=b⇒a=b=2
F, left=6.1+5a, right=6b+3c+2d
equation:
6+5(2) = 6(2)+3(1)+2d
16=15+2d
1=2d
d=0.5
So the reaction equation becomes:
1K₂MnF₆ + 2SbF₅⇒ 2KSbF₆ + 1MnF₃ + 0.5F₂ x2
2K₂MnF₆ + 4SbF₅⇒ 4KSbF₆ + 2MnF₃ + F₂
I believe the answer would be Saturated.
Explanation:
The integrated rate law for the zeroth order reaction is:
![[A]=-kt+[A]_0](https://tex.z-dn.net/?f=%5BA%5D%3D-kt%2B%5BA%5D_0)
The integrated rate law for the first order reaction is:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
The integrated rate law for the second order reaction is:
![\frac{1}{[A]}=kt+\frac{1}{[A]_0}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA%5D_0%7D)
Where,
is the active concentration of A at time t
is the active initial concentration of A
t is the time
k is the rate constant