<span>Oxidation is the loss of electrons and corresponds to an increase in oxidation state. The reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure, the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half-reaction is the same as the number of electrons consumed in the reduction half-reaction.</span>
37. Is D
38. Is C
39. Is A
40. Is A
41. Is D I think!
I'm 100% positive about 37-40 but I'm 50% sure on question number 41.
I hope this helped!
Answer:
1.047 M
Explanation:
The given reaction:

For dichromate :
Molarity = 0.254 M
Volume = 15.8 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 15.8 ×10⁻³ L
Thus, moles of dichromate :

Moles of dichromate = 0.0040132 moles
1 mole of dichromate react with 6 moles of iron(II) solution
Thus,
0.0040132 moles of dichromate react with 6 × 0.0040132 moles of iron(II) solution
Moles of iron(II) solution = 0.02408 moles
Volume = 23 mL = 0.023 L
Considering:

<u>Molarity = 0.02408 / 0.023 = 1.047 M</u>
Answer:
No
Explanation:
Protons determine the type of element it is which the number of protons.
Isotopes are determined by the same elements with the same amount of protons, but different number of neutrons.