Density of water is 1, mass of 1000 divide by the volume of 1000 gram in a liter is 1
Their molecules move at different speeds
Answer: Many people assume the original carrot colour is orange, when in fact all the different carrot colours available nowadays come from one common, colourless ancestor, the wild carrot (Daucus carota).
The taste difference between different colored carrots like orange, purple, red, white, and yellow isn't extreme. It isn't even as wide a range as different colored tomatoes. Yet there is some bit of a change to the flavor. It's often slight and it's subtle, mainly showing up when eating carrots raw. You can also understand the taste difference in different colored carrots by cooking them up or roasting them.
<u>Answer:</u> The equilibrium constant for the given reaction is 0.8
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of the products raised to the power its stoichiometric coefficients to the concentration of reactants raised to power its stoichiometric coefficient. It is represented as 
For the general equation:

The equilibrium constant is represented as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical equation:

for this equation is given by:
![K_c=\frac{[H_2O][CO]}{[H_2][CO_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BH_2%5D%5BCO_2%5D%7D)
Concentration at equilibrium of

Putting values in above equation, we get:

Hence, the equilibrium constant for the given chemical reaction is 0.8