Answer : The time passed in years is ![2.74\times 10^2\text{ years}](https://tex.z-dn.net/?f=2.74%5Ctimes%2010%5E2%5Ctext%7B%20years%7D)
Explanation :
Half-life of carbon-14 = 5730 years
First we have to calculate the rate constant, we use the formula :
![k=\frac{0.693}{t_{1/2}}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B0.693%7D%7Bt_%7B1%2F2%7D%7D)
![k=\frac{0.693}{5730\text{ years}}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B0.693%7D%7B5730%5Ctext%7B%20years%7D%7D)
![k=1.21\times 10^{-4}\text{ years}^{-1}](https://tex.z-dn.net/?f=k%3D1.21%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20years%7D%5E%7B-1%7D)
Now we have to calculate the time passed.
Expression for rate law for first order kinetics is given by:
![t=\frac{2.303}{k}\log\frac{a}{a-x}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B2.303%7D%7Bk%7D%5Clog%5Cfrac%7Ba%7D%7Ba-x%7D)
where,
k = rate constant = ![1.21\times 10^{-4}\text{ years}^{-1}](https://tex.z-dn.net/?f=1.21%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20years%7D%5E%7B-1%7D)
t = time passed by the sample = ?
a = initial amount of the reactant disintegrate = 15.3
a - x = amount left after decay process = 14.8
Now put all the given values in above equation, we get
![t=\frac{2.303}{1.21\times 10^{-4}}\log\frac{15.3}{14.8}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B2.303%7D%7B1.21%5Ctimes%2010%5E%7B-4%7D%7D%5Clog%5Cfrac%7B15.3%7D%7B14.8%7D)
![t=274.64\text{ years}=2.74\times 10^2\text{ years}](https://tex.z-dn.net/?f=t%3D274.64%5Ctext%7B%20years%7D%3D2.74%5Ctimes%2010%5E2%5Ctext%7B%20years%7D)
Therefore, the time passed in years is ![2.74\times 10^2\text{ years}](https://tex.z-dn.net/?f=2.74%5Ctimes%2010%5E2%5Ctext%7B%20years%7D)