Here’s a simplified explanation.
The <em>protons</em> in the nucleus <em>repel each other</em>. The <em>neutrons provide the “glue”</em> that holds the nucleus together and prevents it from flying apart.
The “glue” is the strong nuclear force. It is strong but extremely short range. It falls off extremely rapidly as the p-n distance increases.
A <em>neon atom</em> has 10 protons. There are three stable isotopes, with 10, 11, and 12 neutrons.
With fewer than 10 protons, the glue is not strong enough to hold the nucleus together.
If there are more than 12 neutrons, the average p-n distance is great enough that the glue has again become too weak.
<em>Gold</em> has one stable isotope. It contains 79 protons and 118 neutrons.
If there are fewer than 118 neutrons, the proton repulsions will be too strong for the strong force. If there are more than 118 neutrons, the average p-n distance will be large enough that the glue will again be too weak to hold the nucleus toge
ther.
<span>2.0 moles. (83.3g / 208 [grams/moles] *5 [from balancing] = around 2 </span>
For the equilibrium that exists in an aqueous solution<span> of nitrous acid (</span>HNO2, a weak acid) ... [H+][NO2. –]. [HNO2<span>]. PAGE: 14.1. 2. Which of the following is a conjugate ... Using the following Ka values, indicate the correct </span>order<span> of base strength. </span>HNO2<span>. Ka = </span>4.0<span> × 10–4 .... Calculate the [H+] in a </span>solution<span>that has a </span>pH<span> of 11.70.
i hope thid works
</span>
Magnesium bromide= MgBr2
Potassium chloride= KCl
Explanation:
There are several ways to define acids and bases, but pH and pOH refer to hydrogen ion concentration and hydroxide ion concentration, respectively. The "p" in pH and pOH stands for "negative logarithm of" and is used to make it easier to work with extremely large or small values. pH and pOH are only meaningful when applied to aqueous (water-based) solutions. When water dissociates it yields a hydrogen ion and a hydroxide.