So,
If the number in the ten-thousandth's place is greater than or equal to 5, then round up. If not, round down.
0.1325: Note the 5. We round up.
0.1325 --> 0.133
*just a guess*
you can combine like terms when they are using the same variables or constants. ex: you can combine 34x and 76x because of the variable
Answer:
The sum of the squares of two numbers whose difference of the squares of the numbers is 5 and the product of the numbers is 6 is <u>169</u>
Step-by-step explanation:
Given : the difference of the squares of the numbers is 5 and the product of the numbers is 6.
We have to find the sum of the squares of two numbers whose difference and product is given using given identity,

Since, given the difference of the squares of the numbers is 5 that is 
And the product of the numbers is 6 that is 
Using identity, we have,

Substitute, we have,

Simplify, we have,


Thus, the sum of the squares of two numbers whose difference of the squares of the numbers is 5 and the product of the numbers is 6 is 169
Answer:
The missing value should be 48 because between the two numbers of each group. They are multplied by 6
Step-by-step explanation:
Hope this Helped!
Answer:
<u />
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Special Limit Rule [L’Hopital’s Rule]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.

<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:

- [Limit] Differentiate [Derivative Rules and Properties]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits